Теперь наши результаты мы обобщим на три измерения. Стоячая волна в прямоугольном ящике должна обладать целым числом полуволн
Каждое направление и частота волны описываются вектором волнового числа k. Его
Число типов колебаний с k
то же и с D
Произведение
Хоть мы этого и не доказали, результат не зависит от формы
ящика.
Теперь мы применим этот результат для того, чтобы найти число фотонных мод для фотонов с частотами в интервале Dw. Нас интересует всего-навсего энергия разных собственных колебаний, а не направления самих волн. Мы хотим знать число собственных колебаний в данном интервале частот. В вакууме величина k связана с частотой формулой
|k| =w/c. (2.39)
Значит, в интервал частот Dw попадают все моды, отвечающие векторам k,
4p
Количество собственных колебаний (мод) тогда равно
Однако раз нас интересуют частоты, то надо подставить
Но здесь возникает одно усложнение. Если мы говорим о собственных колебаниях электромагнитной волны, то каждому данному волновому вектору k может соответствовать любая из двух поляризаций (перпендикулярных друг другу). Поскольку эти собственные колебания независимы, то нужно (для света) удвоить их число. И мы имеем
Мы показали уже [см. (2.33)], что каждое собственное колебание (мода, тип колебаний, «состояние») обладает в среднем
энергией
Умножая это на число собственных колебаний, мы получаем энергию D
Это и есть закон для спектра частот излучения абсолютно черного тела, найденный нами уже однажды в гл. 41 (вып. 4). Спектр этот вычерчен на фиг. 2.10.
Вы теперь видите, что ответ зависит от того факта, что фотоны являются бозе-частицами — частицами, имеющими тенденцию собираться всем вместе в одном и том же состоянии (амплитуда такого поведения велика). Бы помните, что именно Планк, изучавший спектр абсолютно черного тела (который представлял загадку для классической физики) и открывший формулу (2.43), положил тем самым начало квантовой механике.
§ 6. Жидкий гелий