Читаем Feynmann 8 полностью

А что можно сказать о повороте вокруг оси у на угол 360° Мы уже знаем ответ для поворота на 360° вокруг оси z: амплитуда пребывания в любом состоянии меняет знак. Повороты на 360° вокруг любой оси всегда приводят прибор в прежнее положение. Таким образом, результат любого поворота на 360° должен быть таким же, как и при повороте на 360° вокруг оси z,—все амплитуды должны просто переменить знак. Теперь представим себе два последовательных поворота на 180° вокруг оси у по формуле (4.20); после них должен получиться резуль­тат (4.18). Иными словами,

Это означает, что

Следовательно, g=-b+p, и преобразование для поворота на 180° вокруг оси у может быть записано так:

Рассуждения, которыми мы только что пользовались, в рав­ной степени применимы к поворотам на 180° вокруг любой оси в плоскости ху, хотя, конечно, повороты вокруг разных осей дадут для b разные числа. Но это единственное, чем они могут отличаться. В числе b имеется известный произвол, но, как только оно определено для какой-то одной оси в плоскости ху, оно определяется и для всех прочих осей. Принято выби­рать b=0 для поворотов на 180° вокруг оси у.

Чтобы показать, что свобода такого выбора у нас есть, предположим, что мы решили, что b не равно нулю для пово­рота вокруг оси y; тогда можно показать, что в плоскости ху существует какая-то другая ось, для которой соответствующая фаза будет нулем. Найдем фазовый множитель bA для оси А, образующей с осью у угол a, как показано на фиг. 4.7, а.

Фиг. 4.7. Поворот на 180° вокруг оси А (а) эквивалентен повороту на 180° вокруг оси у (б), за которым следует поворот вокруг оси z' (в).

(Для удобства на рисунке угол а отрицателен, но это неважно.) Если теперь мы возьмем прибор Т, первоначально направлен­ный гак же, как и S, а потом повернем его вокруг оси А на 180°, то его оси — назовем их х", у", z"расположатся так, как на фиг. 4,7, а. Амплитуды по отношению к Т тогда станут

Но той же самой ориентации можно добиться двумя последова­тельными поворотами, показанны­ми на фиг. 4.7, б и в. Возьмем сначала прибор U, повернутый по отношению к S на 180° вокруг оси у. Оси х', у' и z' прибора U будут такими, как на фиг. 4.7, б, а амп­литуды по отношению к U будут даваться формулой (4.22).

Заметьте теперь, что от U к T можно перейти, повернув прибор U вокруг «оси z», т. е. вокруг z', как показано на фиг. 4.7, в. Из рисунка видно, что требуемый угол вдвое больше угла а, но на­правлен в обратную сторону (по отношению к z"). Используя пре­образование (4.19) с j=-2a, получаем

Подставляя (4.22) в (4.24), получаем

Эти амплитуды, конечно, должны совпасть с полученными в (4.23). Значит, bA должно быть связано с a и b формулой

bA=b-a. (4.26) Это означает, что если угол a между осью А и осью у (прибоpa S) равен b то в преобразовании поворота на 180° вокруг оси А будет стоять bA=0.

Но коль скоро у какой-то из осей, перпендикулярных к оси z, может оказаться b=0, то ничто не мешает принять эту ось за ось у. Это всего лишь вопрос соглашения, и мы примем это в общем случае. Итог: для поворота на 180° вокруг оси у мы имеем

Продолжая размышлять о поворотах вокруг оси у, перей­дем теперь к матрице преобразования для поворотов на 90°. Мы в состоянии установить ее вид, оттого что знаем, что два последовательных поворота на 90° вокруг одной и той же оси — это то же самое, что один поворот на 180°. Напишем преобразование для 90° в самой общей форме:

Второй поворот на 90° вокруг той же оси обладал бы теми же коэффициентами:

Подставляя (4.28) в (4.29), получаем

Однако из (4.27) нам известно, что

так что должно быть

(4.31)

Этих четырех уравнений вполне хватает, чтобы определить все наши неизвестные а, b, с и d. Сделать это нетрудно. По­смотрите на второе и четвертое уравнения. Вы видите, что a2=d2, откуда либо a=d, либо a=-d. Но последнее отпадает, потому что тогда не выполнялось бы первое уравнение. Зна­чит, d=a. А тогда сразу же выходит b=1/2a и с=-1/2а. Те­перь все выражено через а. Подставляя, скажем, во второе

уравнение значения b и с, получаем

а2 -1/4a2 = 0. или а4 =1/4.

Из четырех решений этого уравнения только два приводят к детерминанту стандартной формы. Мы можем принять а=1/Ц2;

тогда

Иными словами, для двух приборов S и T при условии, что Т повернут относительно S на 90° вокруг оси у, преобра­зование имеет вид

Эти уравнения можно, конечно, разрешить относительно С+ и С-; это даст нам преобразование при повороте вокруг оси у на -90°. Переставив еще и штрихи, мы напишем

§ 5. Повороты вокруг оси х

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг