Если внутри ящика есть заряженные объекты, то их потенциальная энергия будет равна qj; мы обозначим это число буквой V. Оно по условию совершенно не зависит от положения самого объекта. От наложения потенциала никаких физических изменений внутри ящика не произойдет, ведь постоянный потенциал ничего не меняет в том, что происходит внутри ящика. Значит, закон, по которому теперь будет меняться амплитуда, вывести никак нельзя. Можно только догадаться. Вот он, правильный ответ — он выглядит примерно так, как и следовало ожидать: вместо энергии нужно поставить сумму потенциальной энергии V и энергии Ер, которая сама есть сумма внутренней и кинетической энергий. Амплитуда тогда будет пропорциональна
Общий принцип состоит в том, что коэффициент при t, который можно было бы назвать со, всегда дается полной энергией системы: внутренней энергией («энергией массы») плюс кинетическая энергия плюс потенциальная энергия:
Или в нерелятивистском случае
Ну, а что можно сказать о физических явлениях внутри ящика? Если физическое состояние не одно, а несколько, то что мы получим? В амплитуду каждого состояния войдет один и тот же добавочный множитель
e-(i/h)Vt
сверх того, что было при V=0. Это ничем не отличается от сдвига нуля нашей энергетической шкалы. Получится одинаковый сдвиг всех фаз всех амплитуд, а это, как мы раньше убедились, не меняет никаких вероятностей. Все физические явления остаются теми же. (Мы предположили, что речь идет о разных состояниях одного и того же заряженного объекта, так что qj у них у всех одинаково. Если бы объект мог менять свой заряд, переходя от одного состояния к другому, то мы пришли бы к совершенно другому результату, но сохранение заряда предохраняет нас от этого.)
До сих пор наше допущение согласовывалось с тем, чего следовало ожидать от простого изменения уровня отсчета энергии. Но если оно на самом деле справедливо, то обязано выполняться и для потенциальной энергии, которая не является просто постоянной. В общем случае V может меняться произвольным образом и во времени, и в пространстве, и окончательный результат для амплитуды должен выражаться на языке дифференциальных уравнений. Но мы не хотим сразу приступать к общему случаю, а ограничимся некоторым представлением о том, что происходит. Так что пока мы рассмотрим только потенциал, который постоянен во времени и медленно меняется в пространстве. Тогда мы сможем сравнить между собой классические и квантовые представления.
Предположим, что мы размышляем о случае, изображенном на фиг. 5.3, где два ящика поддерживаются при постоянных потенциалах j1 и j2, а в области между ними потенциал плавно меняется от j1 к j2.
Фиг. 5.3. Амплитуда для частицы, переходящей от одного потенциала к другому.
Вообразим, что у некоторой частицы есть амплитуда оказаться в одной из этих областей. Допустим также, что импульс достаточно велик, так что в любой малой области, в которой помещается много длин волн, потенциал почти постоянен. Тогда мы вправе считать, что в любой части пространства амплитуда обязана выглядеть так, как (5.18), только V в каждой части пространства будет свое.
Рассмотрим частный случай, когда j1=0, так что потенциальная энергия в первом ящике равна нулю, во втором же пусть qj2 будет отрицательно, так что классически частица в нем будет обладать большей кинетической энергией. В классическом смысле она во втором ящике будет двигаться быстрее, у нее будет, стало быть, и больший импульс. Посмотрим, как это может получиться из квантовой механики.
При наших предположениях амплитуда в первом ящике Должна была быть пропорциональна
а во втором
(Будем считать, что внутренняя энергия не изменяется, а остается в обеих областях одной и той же.) Вопрос заключается в следующем: как эти две амплитуды сопрягаются друг с другом в области между ящиками?
Мы будем считать, что все потенциалы во времени постоянны, так что в условиях ничего не меняется. Затем мы предположим, что изменения амплитуды (т. е. ее фазы) всюду обладают одной и той же частотой, потому что в «среде» между ящиками нет, так сказать, ничего, что бы зависело от времени. Если в пространстве ничего не меняется, то можно считать, что волна в одной области «генерирует» во всем пространстве вспомогательные волны, которые все колеблются с одинаковой частотой и, подобно световым волнам, проходящим через покоящееся вещество, не меняют своей частоты. Если частоты в (5.21) и (5.22) одинаковы, то должно выполняться равенство
Здесь по обе стороны стоят просто классические полные энергии, так что (5.23) есть утверждение о сохранении энергии. Иными словами, классическое утверждение о сохранении энергии вполне равноценно квантовомеханическому утверждению о том, что частоты у частицы всюду одинаковы, если условия во времени не меняются. Все это согласуется с представлением о том, что hw=E.