Читаем Feynmann 8 полностью

В том частном случае, когда V1=0, a V2 отрицательно (5.23) означает, что p2 больше р1, т. е. в области 2 волны короче. Поверхности равной фазы показаны на фиг. 5.3 пунктиром. Там еще вычерчен график вещественной части амплитуды, из которого тоже видно, как уменьшается длин волны при переходе от области 1 в область 2. Групповая скорость волн, равная р/М, тоже возрастает так, как и следовало ожидать из классического сохранения энергии, потому что оно просто совпадает с (5.23).

Существует интересный частный случай, когда V2 становится столь большим, что V2- V1 уже превышает p21/2M. Тогда p22, даваемое формулой

становится отрицательным. А это значит, что р2— мнимо число, скажем ip'. Классически мы бы сказали, что частица никогда не попадет в область 2, ей не хватит энергии, чтобы взобраться на потенциальный холм. Однако в квантовой ме­ханике амплитуда по-прежнему представляется уравнением (5.22); ее изменения в пространстве по-прежнему следуют закону

Но раз p2— мнимое число, то пространственная зависимость превращается в вещественную экспоненту. Если, скажем, частица сперва двигалась в направлении +х, то амплитуда начнет меняться, как

С ростом х она быстро падает.

Вообразим, что обе области с разными потенциалами рас­положены очень тесно друг к другу, так что потенциальная анергия внезапно изменяется от V1 к V2 (фиг. 5.4, а).

Фиг. 5.4. Амплитуда для частицы, приближающейся к сильно отталкивающему потенциалу.

Начер­тив график вещественной части амплитуды вероятности, Мы получим зависимость, показанную на фиг. 5.4, б. Волна в области 1 отвечает частице, пытающейся попасть в область 2, но там амплитуда быстро спадает. Имеется какой-то шанс, что ее заметят в области 2, где классически она ни за что бы Не оказалась, но амплитуда этого очень мала (кроме места близ самой границы). Положение вещей очень похоже на то, Что мы обнаружили для полного внутреннего отражения света. Обычно свет не выходит, но его можно все же заметить, если поставить что-нибудь на расстоянии в одну-две длины волны от поверхности.

Вспомните, что если поместить вторую поверхность вплот­ную к границе, где свет полностью отражался, то можно до­биться того, чтобы во втором куске вещества все же распро­странялся какой-то свет. То же самое происходит и с частицами в квантовой механике. Если имеется узкая область с таким высоким потенциалом V, что классическая кинетическая энер­гия там отрицательна, то частица никогда не пройдет сквозь нее. Но в квантовой механике экспоненциально убывающая амплитуда может пробиться сквозь эту область и дать слабую вероятность того, что частицу обнаружат по другую сторону — там, где кинетическая энергия опять положительна. Все это изображено на фиг. 5.5.

Фиг. 5.5. Проникновение амплитуды сквозь потенциальный барьер.

Эффект называется квантовомеханическим «проникновением сквозь барьер».

Проникновение квантовомеханической амплитуды сквозь барьер дает объяснение (или описание) a-распада ядра урана. Кривая зависимости потенциальной энергии a-частицы от рас­стояния от центра показана на фиг. 5.6, а.

Фиг. 5.6. Потенциал a-частицы в ядре урана (а) и качественный вид амплитуды вероятности (б).

Если бы попытаться выстрелить a-частицей с энергией Е в ядро, то она почувство­вала бы электростатическое отталкивание от ядерного заряда z и по классическим канонам не подошла бы к ядру ближе, чем на такое расстояние r1 при котором ее полная энергия срав­няется с потенциальной V. Но где-то внутри ядра потенциаль­ная энергия окажется намного ниже из-за сильного притяжения короткодействующих ядерных сил. Как же тогда объяс­нить, отчего при радиоактивном распаде мы обнаруживаем a-частицы, которые, первоначально находясь внутри ядра, оказываются затем снаружи него с энергией Е? Потому что они. с самого начала обладая энергией E, «просочились» сквозь потенциальный барьер. Схематичный набросок амплитуды ве­роятности дан на фиг. 5.6, б, хотя на самом деле экспоненци­альный спад много сильнее, чем показано. Весьма примеча­тельно, что среднее время жизни a-частицы в ядре урана до­стигает 41/2 миллиарда лет, тогда как естественные колебания внутри ядра чрезвычайно быстры, их в секунду бывает 1022! Как же можно из 10-22 сек получить число порядка 109 лет? Ответ состоит в том, что экспонента дает неслыханно малый множитель порядка 10-45, что и приводит к очень малой, хоть и вполне определенной, вероятности просачивания. Если уж a-частица попала в ядро, то почти нет никакой амплитуды об­наружить ее не в ядре; если, однако, взять таких ядер побольше и подождать подольше, то вам, может быть, повезет и вы уви­дите, как частица выскочит наружу.

§ 4. Силы; классический предел

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука