Читаем Feynmann 9 полностью

Вы считаете, что это не «парадокс», но что это все же очень странно? С этим мы все можем согласиться. Именно это и делает физику столь захватывающе интересной.

§ 4. Матрица поворота для произвольного спина

Сейчас, я надеюсь, вам уже ясно, как важно представ­ление о моменте количества движения для понимания атомных процессов. До сих пор мы рассматривали только системы со спи­нами (или «полными моментами количества движения») 0, 1/2 и 1. Но бывают, конечно, и атомные системы с большими момента­ми количества движения. Для анализа таких систем нужны такие же таблицы амплитуд поворота, какие мы привели в гл. 15, § 6. Иными словами, нужна матрица амплитуд для спина 3/2, 2, 5/2, 3 и т. д. Мы не будем подробно рассчитывать эти таблицы, но хотели бы показать, как это делается, чтобы вы, если понадобится, могли сами это проделать.

Как мы видели раньше, любая система со спином, или «пол­ным моментом количества движения», j может существовать в одном из 2/ + 1 состояний, в которых z-компонента момента количества движения принимает одно из дискретных значе­ний j, j-1, j -2, . . ., -(j-1), -j (все в единицах h). Обозначая z-компоненту момента количества движения про­извольного выбранного состояния через mh, можно определить состояние момента количества движения, задав численные значения двух «квантовых чисел момента количества движения» j и m. Такое состояние можно отметить, указав вектор состоя­ния | j, m>. В случае частиц со спином 1/2 могут быть два состоя­ния | 1/2, 1/2) и | 1/2, -1/2> a состояния системы со спином 1 в этих обозначениях можно записать как |1, +1>, |1, 0>, | 1, -1>. У частицы со спином 0 может быть, конечно, лишь одно

состояние | 0, 0>.

Теперь мы можем посмотреть, что происходит, когда мы прое­цируем общее состояние | j, m> на представление, относящееся к повернутой системе осей. Прежде всего известно, что j — это число, которое характеризует систему, поэтому оно не меняется. При повороте осей мы получим просто смесь различных значе­ний т для одного и того же j. В общем случае появится амплиту­да того, что система в повернутой системе координат окажется в состоянии | j, m'>, где m' — новая z-компонента момента ко­личества движения. Значит, нам нужны матричные элементы <j, m' |R|j, m> всевозможных поворотов. Мы уже знаем, что бывает, если поворот делается на угол j вокруг оси z. Новое состояние — это попросту старое, умноженное на eimj, у него по-прежнему то же значение т. Это можно записать так:

или, если вам больше нравится,

(где dm,m' равно единице при m' = m, и нулю в прочих случаях).

При поворотах вокруг любой другой оси возникает переме­шивание различных m-состояний. Можно было бы, конечно, попытаться подсчитать матричные элементы для произвольных поворотов, описываемых углами Эйлера b,a и g. Но будет легче, если мы вспомним, что самый общий такой поворот может быть составлен из трех поворотов Rz(g), Ry(a), Rz(b); так что если мы знаем матричные элементы для поворотов вокруг оси y, то уже располагаем всем необходимым.

Как же нам найти матрицу поворота для поворота частицы со спином j на угол q вокруг оси у? Опираясь на основные за­коны (и на то, что уже было), это сделать нелегко. Мы так посту­пали со спином 1/2: вывели все, что нужно, пользуясь довольно сложными соображениями симметрии. Для спина 1 мы это про­делали уже иначе: рассмотрели частный случай, когда система со спином 1 складывается из двух систем со спином 1/2. Если вы последуете за нами и признаете правильным тот факт, что в общем случае ответы зависят только от спина j, а не от того, как скреплены между собой разные части системы со спином j, то мы сможем обобщить рассуждения для спина 1 на произвольный спин. Мы сможем, например, соорудить искусственную систему со спином 3/2 из трех объектов со спином 1/2. Мы сможем даже избежать всяких усложнений, вообразив, что все они суть различные частицы — скажем, протон, электрон и мюон. Преобразуя каждый объект со спином 1/2, мы увидим, что происходит со всей системой — надо только вспомнить, что для комбинированного состояния все амплитуды перемножаются. Давайте посмотрим, как все это проходит.

Допустим, мы расположили все три объекта со спином 1/2 спинами вверх; обозначим такое состояние |+++>. Если мы взглянем на него из системы координат, повернутой относительно оси z на угол j, то каждый плюс останется плюсом, но умно­жится на еij/2. Таких множителей у нас тройка, так что

Ясно, что состояние |+++> — это как раз то, что мы назы­ваем состоянием m=+3/2, или состоянием |3/2, + 3/2>.

Если мы затем повернем эту систему вокруг оси у, то у каж­дого из объектов со спином 1/2 появится некоторая амплиту­да стать плюсом или стать минусом, так что вся система станет теперь смесью восьми возможных комбинаций |+++>,

|++->, |+-+>, |-++>, |+-->, |-+->,

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука