Читаем Feynmann 9 полностью

Значит, на опыте видны возникающие в реакции две a-частицы. Обозначим их a1 и a2; поскольку они вылетают с разными энер­гиями, их можно отличить друг от друга. Кроме того, выбирая a1, имеющие нужную энергию, мы можем отобрать любые воз­бужденные состояния Ne20.

Опыт ставился так, как показано на фиг. 16.9.

Фиг. 16.9. Размещение приборов в опыте по определению спина воз­бужденных состояний Ne20.

Пучок ионов углерода с энергией 16 Мэв был направлен на углеродную пленку. Первая a-частица регистрировалась кремниевым детектором, настроенным на прием a-частиц с нужной энергией, движущихся вперед (по отношению к падающему пучку ионов С12). Вторая a-частица регистрировалась счетчиком a2, поставленным под углом q к a1. Скорость счета сигналов совпа­дений от a1 и a2 измерялась как функция угла q.

Идея опыта в следующем. Прежде всего нужно знать, что спины С12, О16 и a-частицы все равны нулю. Назовем направ­ление движения начальных частиц С12 направлением +z; тогда известно, что Ne20* должен обладать нулевым моментом коли­чества движения относительно оси z. Ведь ни у одной из осталь­ных частиц нет спина; кроме того, С12 прилетает вдоль оси z и a1 улетает вдоль оси z, так что у них не может быть момента относительно этой оси. И каким бы ни был спин j ядра Ne20*, мы знаем, что это ядро находится в состоянии |j, 0>. Что же случится, когда Ne20* распадется на О16 и другую a-частицу? Что ж, a-частицу поймает счетчик a2, а О16, чтобы сохранить начальный импульс, вынужден будет уйти в противоположную сторону. Относительно новой оси (оси a2) не может быть тоже никакой компоненты момента количества движения. А раз конечное состояние имеет относительно новой оси нулевой мо­мент количества движения, то у распада Ne20* должна быть некоторая амплитуда того, что m'=0, где m'—квантовое число компоненты момента количества движения относительно новой оси. Вероятность наблюдать a2 под углом q будет на самом деле равна квадрату амплитуды (или матричного эле­мента)

Чтобы получить спин интересующего нас состояния Ne20*, вычертим интенсивность наблюдений второй a-частицы как функцию угла и сравним с теоретическими кривыми для раз­личных значений j. Как мы отмечали в конце предыдущего параграфа, амплитуды <j,0|Ry(q)|j,0>—это просто функции Рj(cosq). Значит, угловые распределения будут следовать кри­вым [Pj(cosq)]2. Экспериментальные результаты для двух возбужденных состояний показаны на фиг. 16.10.

Фиг. 16.10. Экспе­риментальные резуль­таты измерений уг­лового распределения a-частиц, вылетающих при распаде двух воз­бужденных состояний Ne20.

Они получены на устрой­стве, показанном на фиг. 16.9.

Вы видите, что угловое распределение для состояния 5,80 Мэв очень хорошо укладывается на кривую1(cosq)]2, т. е. оно должно быть состоянием со спином 1. С другой стороны, данные для состоя­ния 5,63 Мэв выглядят совершенно иначе; они ложатся на кривую [Р3(cosq)]2. Спин этого состояния равен 3.

В этом опыте мы измерили момент количества движения двух возбужденных состояний Ne20*. Этой информацией можно воспользоваться, чтобы понять, как ведут себя протоны и нейтроны внутри этого ядра, и это принесет нам добавочные сведения о таинственных ядерных силах.

§ 6. Сложение моментов количества движения

Когда мы изучали сверхтонкую структуру атома водорода в гл. 10 (вып. 8), нам пришлось рассчитывать внутренние состоя­ния системы, составленной из двух частиц — электрона и протона — со спинами 1/2. Мы нашли, что четверка возможных спиновых состояний такой системы может быть разбита на две группы — на тройку состояний с одной энергией, которая во внешнем поле выглядела как частица со спином 1, и на одно ос­тавшееся состояние, которое вело себя как частица со спином 0. Иначе говоря, объединяя две частицы со спином 1/2, можно образовать систему, «полный спин» которой равен либо единице, либо нулю. В этом параграфе мы хотим рассмотреть на более общем уровне спиновые состояния системы, составленной из двух частиц с произвольными спинами. Это другая важная проблема, связанная с моментами количества движения квантовомеханической системы.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука