Читаем Feynmann 9 полностью

Повторяя ту же процедуру, найдем

а также, конечно,

Это и есть правила составления из спина 1 и спина 1/2 полного спина J=3/2. Мы свели (16.45) и (16.50) в табл. 16.5.

Таблица 16.5 · СОСТОЯНИЯ С J=3/2 АТОМА ДЕЙТЕРИЯ

Но у нас пока есть только четыре состояния, а у системы, которую мы рассматриваем, их шесть.

Из двух состояний во второй строчке (16.42) мы для об­разования |J=3/2, М=+1/2> составили только одну линей­ную комбинацию. Есть и другая линейная комбинация, орто­гональная к ней, у нее тоже М=+1/2 и она имеет вид

Точно так же из двух состояний в третьей строке (16.42) можно скомбинировать два взаимно-ортогональных состояния, каждое с М =-1/2. То, которое ортогонально к (16.50), имеет вид

это и есть два оставшихся состояния. У них M=me+md=±1/2; эти состояния должны соответствовать J=1/2. Итак, мы имеем

Можно убедиться, что эти два состояния действительно ведут себя как состояния объекта со спином 1/2; для этого надо выразить дейтронную часть через нейтронные и протонные со­стояния (при помощи табл. 16.3). Первое состояние в (16.53) превратится в

(16.55) а это можно переписать так:

Посмотрите теперь на выражение в первых фигурных скобках и подумайте, что получается при объединении е и р. Вместе они образуют состояние с нулевым спином (см. нижнюю строку в табл. 16.3) и не дают вклада в момент количества движения. Остался только нейтрон, значит, вся первая фигурная скобка (16.56) будет вести себя при поворотах как нейтрон, а именно как состояние с J=1/2, M=+1/2.

Повторяя те же рассуждения, убедимся, что во вторых фигурных скобках (16.56) электрон и нейтрон объединяются, чтобы образовать нулевой момент количества движения, и ос­тается только вклад протона — с mp=+1/2. Скобка опять ведет себя как объект с J=+1/2, М=+1/2. Значит, и все выра­жение (16.56) преобразуется как |J=+1/2, М=+1/2>, чего мы и хотели. Состояние М=-1/2, отвечающее формуле (16.56), можно расписать так (заменив везде, где нужно, +1/2 на -1/2):

Вы легко проверите, что это совпадает со второй строчкой в (16.54), как и полагается, если каждая скобка представляет собой одно из двух состояний системы со спином 1/2. Значит, наши результаты подтвердились. Дейтрон и электрон могут существовать в шести спиновых состояниях, четыре из которых ведут себя как состояния объекта со спином 3/2 (табл. 16.5), а два — как объект со спином J/2 (16.54).

Результаты табл. 16.5 и уравнения (16.54) мы получили, вос­пользовавшись тем, что дейтрон состоит из нейтрона и протона. Правильность уравнений не зависит от этого особого обстоятель­ства. Для любого объекта со спином 1, объединяемого с объектом со спином 1/2, законы объединения (и коэффициенты) одни и те же. Совокупность уравнений в табл. 16.5 означает, что если система координат поворачивается, скажем, вокруг оси у, так что состояния частицы со спином 1/2 и частицы со спином 1 изме­няются согласно табл. 16.1 и 16.2, то линейные комбинации по правую сторону знака равенства будут изменяться так, как это свойственно объекту со спином 3/2. При таком же повороте со­стояния (16.54) будут меняться как состояния объекта со спи­ном 1/2. Результаты зависят только от свойств относительно пово­ротов (т. е. от спиновых состояний) двух исходных частиц, но отнюдь не от происхождения их моментов количества движения. Мы этим происхождением воспользовались лишь для вывода формул, выбрав частный случай, в котором одна из составных частей сама состоит из двух частиц со спином 1/2 в симметричном состоянии. Все наши результаты мы свели в табл. 16.6, изменив индексы е и d на а и b, чтобы подчеркнуть их общность.

Таблица 16.6 · ОБЪЕДИНЕНИЕ ЧАСТИЦЫ СО СПИНОМ 1/2( ja=1/2) С ЧАСТИЦЕЙ СО СПИНОМ 1 (jb=1)

Поставим теперь себе общую задачу найти состояния, кото­рые можно образовать, объединяя два объекта с произвольными спинами. Скажем, у одного спин ja (так что его z-компонента mа пробегает 2jа+1 значений от -ja до +ja, а у другого jb (с z-компонентой mb, пробегающей значения от - jb до+jb).

Объединенные состояния суть | а, mа; b, mb>, их всего (2ja+1)(2jb+1). Какие же состояния с полным спином / мы обнаружим?

Полная z-компонента М момента количества движения рав­няется mа+mb, и все состояния можно перечислить, опираясь на величину М [как в (16.42)]. Наибольшое М является единст­венным; оно отвечает значениям ma=ja и mb=jb и равно по­просту ja+jb. Это означает, что наибольший полный спин J также равен сумме jа+jb:

J=Ммакс=ja+jb.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука