Читаем Feynmann 9 полностью

|--+> или |--->. Ясно, однако, что их можно раз­бить на четыре группы, чтобы каждая соответствовала своему значению m. Прежде всего мы имеем |+++>, для которого m=3/2. Затем имеется тройка состояний |++->, |+-+> и |-++> — каждое с двумя плюсами и одним минусом. Поскольку каждый из объектов со спином 1/2 имеет равные шансы стать после поворота минусом, то каждая из этих трех комбинаций должна войти на равных паях. Поэто­му возьмем комбинацию

где множитель 1/Ц3 поставлен для нормировки. Если мы по­вернем это состояние вокруг оси z, то получим множитель eij/2 для каждого плюса и e-if/2 для каждого минуса. Каждое слагаемое в (16.27) умножится на eij/2, и общий множитель еij/2 мы вынесем за скобки. Такое состояние соответствует нашему представлению о состоянии с m=+1/2; мы приходим к выводу, что

Точно так же можно написать

что соответствует состоянию с m=-1/2. Заметьте, что мы берем только симметричные сочетания, у нас нет комбинаций, куда входят слагаемые со знаком минус. Они отвечали бы со­стояниям с таким же т, но с иным j. Это аналогично случаю спина 1, где (1/Ц2){|+->+|-+>} было состоянием | 1,0>, а (1/Ц2){|+->-|-+>} было состоянием | 0,0>. Наконец, мы имеем

Эта четверка состояний сведена в табл. 16.1.

Таблица 16.1 · СВОДКА СОСТОЯНИЙ

Все, что нам теперь нужно сделать, это взять каждое состоя­ние, повернуть его вокруг оси у и посмотреть, сколько новых состояний оно создаст — пользуясь известной нам матрицей поворота для частицы спина 1/2. Можно поступать так же, как мы это делали в случае спина 1 [см. гл. 10, § 6 (вып. 8)]. (Только алгебры будет побольше.) Мы будем строго следовать идеям гл. 10 (вып. 8), так что подробных объяснений давать не будем. Состояния в системе S будут обозначаться

и т. д.; T-системой будет считаться система, повернутая вокруг оси у системы S на угол q. Состояния в T-системе будут обозна­чаться |3/2, + 3/2, Т>, |3/2, + 1/2, Т> и т. д. Ясно, что | 3/2, + 3/2, Т> это то же самое, что | +' + ' + ' > (штрихи всегда относятся к T-системе). Точно так же |3/2, +1/2, Т> будет равняться

и т. д. Каждое |+'>-состояние в T-системе получается как из |+>-, так и из |->-состояний в системе S с помощью матрич­ных элементов из табл. 10.4 (вып. 8, стр. 267).

Если мы имеем тройку частиц со спином 1/2, то (10.47) надо заменить на

Пользуясь обозначениями табл. 10.4, получим вместо (10.48) уравнение

Это уже дает нам некоторые из наших матричных элементов <jT| iS>. Чтобы получить выражение для 3/2, +1/2, S> мы дол­жны исходить из преобразования состояния с двумя плюсами и одним минусом. К примеру,

Добавляя два сходных выражения для + — +> и | — + +> и деля на ]/3, найдем

Продолжая этот процесс, мы найдем все элементы <jТ|iS> матрицы преобразования. Они приведены в табл. 16.2. Первый столбец получается из (16.32), второй — из (16.34). Последние два столбца были вычислены таким же способом. Теперь допустим, что T-система была повернута относительно S-системы на угол q вокруг ее оси у. Тогда а, b, с и d равны [см. (10.54), вып. 8]: а=d=cosq/2, с=-b=sinq/2. Под­ставляя это в табл. 16.2, получаем формулы, похожие на вторую половину табл. 15.2, но на этот раз для системы со спином 3/2.

Таблица 16.2 · МАТРИЦА ПОВОРОТА ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2

Коэффициенты а, b, с и d объясняются в табл. 10.4.

Рассуждения, которые мы только что провели, были обобще­ны на систему с произвольным спином j. Состояния |j, m> можно составить из 2j частиц со спином 1/2 у каждой. (Из них j+m будут в ] + >-состоянии, а j-m будут в |->-состоянии.) Проводится суммирование по всем возможным способам, какими их можно сочетать, а затем состояния нормируются умноже­нием на надлежащую постоянную. Если у вас есть способности к математике, то вы сможете доказать, что получается следую­щий результат:

где k пробегает все те значения, при которых под знаком факториала получаются неотрицательные величины.

Это очень запутанная формула, но с ее помощью вы сможете проверить табл. 15.2 для j=1 (стр. 129) и составить ваши собственные таблицы для больших j. Некоторые матричные элементы очень важны и получили особые наименования. Например, матричные элементы для m= m'=0 и целых j известны под названием полиномов Лежандра и обозначаются

Первые из них таковы:

P0(cosq)=l, (16.37)

P1(cosq)=cosq, (16.38)

§ 5. Измерение ядерного спина

Продемонстрируем теперь пример, где понадобятся только что описанные коэффициенты. Он связан с проделанными не так давно интересными опытами, которые вы теперь в состоянии будете понять. Некоторым физикам захотелось узнать спин одного из возбужденных состояний ядра Ne20. Для этого они принялись бомбить углеродную мишень пучком ускоренных ионов углерода и породили нужное им возбужденное состояние Ne20 (обозначаемое Ne20*) в реакции

где a1 — это a-частица, или Не4. Кое-какие из создаваемых таким образом возбужденных состояний Ne20 неустойчивы и распадаются таким путем:

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука