Читаем Feynmann 9 полностью

Попробуем сперва отыскать какую-нибудь функцию попроще, чтобы она удовлетворяла уравнению (17.7). Хотя волновая функция y в общем случае будет зависеть как от q и j, так и от r, можно все же поискать, не бывает ли такого особого случая, когда y не зависит от углов. Если волновая функция от углов не зависит, то при поворотах системы координат ни одна из амплитуд никак не будет меняться. Это означает, что все ком­поненты момента количества движения равны нулю. Такая функция y должна соответствовать состоянию с равным нулю полным моментом количества движения. (На самом деле, ко­нечно, равен нулю только орбитальный момент количества дви­жения, потому что остается еще спин электрона, но мы на эту часть момента не обращаем внимания.) Состояние с нулевым орбитальным моментом количества движения имеет особое на­звание. Его называют «s-состоянием» (можете считать, что s от слова «сферически симметричный»).

Раз y не собирается зависеть от q и j, то в полном лапласиане останется только один первый член и (17.7) сильно упростится:

· Прежде чем заняться решением подобного уравнения, хорошо

; бы, изменив масштаб, убрать из него все лишние константы

вроде е2, m, h. От этого выкладки станут легче. Если сделать подстановки

то уравнение (17.8) обратится (после умножения на r) в

Эти изменения масштаба означают, что мы измеряем расстояние r и энергию Е в «естественных» атомных единицах. Например, r=r/rB, где rB=h2/me2, называется «боровским радиусом» и равно примерно 0,528 Е. Точно так же e=E/ER, где ER=me4/2h2. Эта энергия называется «ридбергом» и равна примерно 13,6 эв. Раз произведение ry встречается в обеих частях уравнения, то лучше работать с ним, чем с самим y. Обозначив

ry=f, (17.12)

мы получим уравнение, которое выглядит проще:

Теперь нам предстоит найти функцию f, которая удовлет­воряет уравнению (17.13), иными словами, просто решить диф­ференциальное уравнение. К сожалению, не существует ника­ких общих, годных во всех случаях жизни методов решения любого дифференциального уравнения. Вы должны просто по­крутить его то так, то этак. Хоть уравнение не из легких, но лю­ди все же нашли, что его можно решить при помощи следующей процедуры. Первым делом вы заменяете f, которое является некоторой функцией от r, произведением двух функций:

Это просто означает, что вы выносите из f(r) множитель е-ar. Для любого f(r) это можно сделать. Задача теперь просто све­лась к отысканию подходящей функции g(r).

Подставив (17.14) в (17.13), мы получим следующее уравне­ние для g:

Мы вправе выбрать любое a, поэтому сделаем так, чтобы было

a2=-e; (17.16)

тогда получим

Вы можете подумать, что мы не так уж далеко ушли от урав­нения (17.13); но новое уравнение тем хорошо, что его можно легко решить разложением g(r) в ряд по r. В принципе есть возможность таким же способом решать и (17.13), но только все проходит сложнее. Мы говорим: уравнению (17.17) можно удов­летворить некоторой функцией g(r), которая записывается в виде ряда

где ak— постоянные коэффициенты. И нам осталось только найти подходящую бесконечную последовательность коэффициентов! Проверим, годится ли такая запись решения, Первая производ­ная такой функции g(r) равна

а вторая

Подставляя это в (17:17), имеем

Пока еще не ясно, вышло ли у нас что-нибудь; но мы рвемся вперед. Если мы первую сумму заменим некоторым ее эквива­лентом, то все выражение станет выглядеть лучше. Первый член в сумме равен нулю, поэтому каждое k можно заменить на k+1, от этого ничего в бесконечном ряде не изменится. Значит, пер­вую сумму мы вправе записать и так:

Теперь можно объединить все три суммы в одну:

Этот степенной ряд должен обращаться в нуль при всех мыслимых значениях r, что возможно лишь тогда, когда коэф­фициенты при каждой степени r порознь равны нулю. Мы полу­чим решение для атома водорода, если отыщем такую последо­вательность ak, для которой

при всех k>1. А это, конечно, устроить легко. Выберите какое угодно а1. Затем все прочие коэффициенты образуйте с помощью формулы

Пользуясь ею, вы получите а2, а3, а4 и т. д., и каждая пара будет, конечно, удовлетворять (17.21). Мы получим ряд для g(r), удовлетворяющий (17.17). С его помощью мы напишем y — решение уравнения Шредингера. Обратите внимание, что решения зависят от того, какова предполагаемая энергия (через a), но для каждого значения e получается свой ряд. Решение-то у нас есть, но что оно представляет физически? Понятие об этом мы получим, поглядев, что происходит вдалеке от протона — при больших r. Там основное значение приобре­тают наивысшие степени членов ряда, т. е. нам надо посмотреть, что бывает при больших k. Когда k>>1, то уравнение (17.22) приближенно совпадает с :

а это означает, что

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука