Интегратизм — это не цель, а путь. Обеспечение правильного сочетания, целесообразного соотношения редукционизма и интегратизма является основой стратегии научного поиска в области познания явлений жизни на ближайшее время, а вернее, для всего будущего развития биологии как точной науки. Руководящим принципом при этом должно быть стремление строить схемы и понятия интегратизма, отправляясь от данных, получаемых на путях редукционизма, т.е. исходя из наиболее простых, элементарных условий шаг за шагом подниматься по восходящим ступеням иерархической градации, переходя ко все возрастающим степеням усложненности исследуемых систем. Внутреннее диалектическое объединение этих двух, казалось бы, диаметрально ориентированных линий биологического исследования и мышления должно характеризовать ближайший этап в подходах к познанию живого мира. (С. 221)
А.Н. Колмогоров родился в семье агронома в г.Тамбове. В 1925 году окончил Московский университет. С 1929 года - старший научный сотрудник НИИ математики и механики при МГУ и одновременно — зав. кафедрой математики в Индустриально-педагогическом институте им. К. Либкнехта (в дальнейшем влившемся в МГПИ им. В.И. Ленина). С 1931 года Колмогоров — профессор МГУ. В разные годы своей жизни он работал зав. отделением математики мехмата МГУ, деканом этого факультета, зав. кафедрой теории вероятностей и зав. лабораторией вероятностных и статистических методов, зав. кафедрой математической статистики и кафедры математической логики МГУ. Научно-педагогическую работу в МГУ совмещал с деятельностью в Математическом институте им. Стеклова АН СССР.
Колмогорову принадлежат работы в сферах теорий функций действительного переменного, конструктивной логики и математики, топологии, механики, теории дифференциальных уравнений, функционального анализа. Основополагающее значение имеют его работы по теории вероятностей. Внес вклад в разработку теории стрельбы, статистических методов контроля массовой продукции, проблем математического образования в высшей и средней школе.
Фрагменты текста печатаются по изданию:
Связь математики с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, а также из внутренних потребностей самой математики. Таково в основном было развитие теории функций комплексного переменного, занявшей к середине XIX в. центральное положение во всем математическом анализе. <...> (С. 60)
В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного и тензорного анализа. Постепенно все более обнаруживалось, что именно с точки зрения механики и физики «скалярные» величины, послужившие исходным материалом для формирования понятия действительного числа, являются лишь частным случаем величин многомерных. <...> (С. 61)
Таким образом, как в результате внутренних потребностей математики, так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых математикой, чрезвычайно расширяется: в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т.п. При таком широком понимании терминов «количественные отношения» и «пространственные формы» приведенное в начале статьи определение математики применимо и на новом современном этапе ее развития. (С. 61-62)