Читаем Философия запаха. О чем нос рассказывает мозгу полностью

В ответ Ринберг поясняет, что он предлагает лишь компьютерную модель. Она не определяется биологическими свойствами компонентов: «Красота модели первичного кодирования в том, что она не зависит от всех этих факторов». Это мнение признается не всеми. Кей считает, что поведение рецепторов, включая очередность кодирования, зависит от биологических условий, в которых находится организм. Она добавляет, что двигательное поведение влияет на скорость вдыхания запахов и следовательно, на временное кодирование. Как объясняет Кей, ограниченность данных Ринберга, полученных в экспериментах на грызунах с зафиксированной в одном положении головой, связана с тем, что у них «отсутствуют вестибулярные эффекты, которые возникают при вдыхании запахов». Вестибулярные эффекты связаны с контролем движений и равновесия. Она говорит: «По-видимому, крысы с зафиксированной головой нюхают медленнее. Если животные нюхают медленнее, это означает, что воздействие стимула пролонгируется и его легче воспринять, но я готова поспорить, что животным труднее делать что-то другое. Так что, возможно, они не различают химические вещества». Изменение скорости вдыхания запахов отражает компромисс между более точной и подробной идентификацией и быстрым двигательным ответом.

Ринберг отвечает, что в других исследованиях было показано, что распознавание запаха не зависит от того, с какой скоростью нюхать[357]. Это дополняет его же статью 2018 года «Независимое от дыхания кодирование запаха»[358]. И все же эта стабильность может зависеть от других факторов, включая запоминание стимулов через распознавание картин активации. Границы между распознаванием запахов и памятью – предмет постоянных дискуссий. «Трудно отделить обонятельное восприятие от заученных воспоминаний, – отмечает Цзоу. – Чаще всего, если вы применяете запах всего один раз, животное его сразу запоминает. Сколько запахов подряд клетки в состоянии запомнить?»

Вопрос о зависимости – или независимости – очередности кодирования от биологических факторов и тем более о степени этой зависимости требует дальнейших исследований. Каким бы ни был результат, идея очередности кодирования создает новые основания для построения теории кодирования запахов.

Ее принципы объясняют быстрые взаимодействия сенсорной системы с окружающим миром. Более длительное, повторяющееся или интенсивное вдыхание запаха в отличие от краткого вдыхания изменяет выборку достигающих носа химических сигналов еще до их оценки. Оценка зависит от временного кодирования на уровне популяций нейронов.

Популяционное кодирование

Мозг анализирует всплески активности нейронов – нервные импульсы. Эта активность имеет разную скорость и последовательность на фоне временных картин популяций нейронов. Пики показывают, когда, в каком сочетании и порядке и при какой амплитуде стимул превращается в нейронный сигнал. Сигнальные события никогда не происходят изолированно, они всегда формируют последовательности. Каждый последующий сигнал определяется предшествовавшими и параллельными сигналами. Аналогично тому, как вы чувствуете, что килограмм весит меньше после того как вы несли пять килограмм, и больше после того как вы несли сто грамм, так и параметры нейронного сигнала, включая его силу, соотносятся с другими сигналами. Опыт тяжести груза – это мера состояния вашего тела в данном контексте, как и ответ нейронов на стимулы. Такая же аналогия справедлива для запахов.

Как анализировать временной код через нервные импульсы? Роджерс смеется: «Здесь в игру опять включается электрофизиология!» Электрофизиологические методы регистрируют потенциалы действия. При возбуждении через клеточную мембрану нейрона проходит сложный каскад ионов, из-за чего изменяется напряжение и электрический заряд нервной клетки.

Механизмы временного кодирования в популяциях обонятельных нейронов млекопитающих изучены недостаточно. С насекомыми дело обстоит лучше. Причина, почему временные модели для обоняния насекомых пока не нашли отражения в работах с млекопитающими, в том, что насекомыми и грызунами занимаются ученые из разных научных сообществ. Наиболее заметные исследования насекомых были проведены в лаборатории Жиля Лорана, а также Джона Хильдебранда, Юргена Бокса, Джона Карлсона, Марка Стопфера и других[359]. Однако обонятельные системы у насекомых и млекопитающих, несмотря на значительные различия, удивительно похожи по механизмам и принципам[360]. Что же мы можем узнать от мух?

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука