Распределение парциального давления кислорода в работающих мышцах в наибольшей степени зависит от функционирования миоглобина в качестве буфера и транспортировщика кислорода. Диффузия кислорода в мышечной ткани при нагрузке создает очень большие градиенты парциального давления кислорода между кровью капилляров и снабжаемыми этими капиллярами мышечными клетками. Когда парциальное давление кислорода в мышечном волокне мало, столь же невелики и градиенты парциального давления кислорода в этом волокне. Следовательно, главным механизмом переноса кислорода в мышечных клетках должна быть облегченная диффузия.
При анаэробно-гликолитической работе повышенная потребность в кислороде может удовлетворяться как за счет увеличения снабжения кислородом, так и за счет более полной его утилизации. Поступление кислорода к тканям может увеличиваться за счет усиления кровотока, либо повышения содержания кислорода в артериальной крови, или в результате обоих этих эффектов. Однако повышение содержания кислорода в артериальной крови путем кратковременной гипервентиляции практически невозможно, поскольку в физиологических условиях насыщение гемоглобина кислородом уже составляет около 98 %. В связи с этим при увеличении потребности мышц в кислороде доставка последнего возрастает главным образом за счет повышения его утилизации.
При работе анаэробно-гликолитической направленности создается артериальная гипоксия, при которой снабжение мышечных клеток кислородом ограничено, и в результате организм спортсменов вынужден работать при уровне усвоения кислорода на 76–80 %. В этих условиях напряжение кислорода в капиллярной крови резко уменьшается, его падение приводит к венозной гипоксии. Благодаря этому ухудшение снабжения тканей кислородом частично компенсируется. Когда градиент напряжения кислорода между кровью и тканями становится слишком мал для того, чтобы кислород высвобождался в достаточном количестве, внутриклеточное напряжение кислорода в области венозного конца капилляра падает ниже критического уровня парциального давления кислорода в митохондриях. Это приводит к угнетению энергетического обмена, что наиболее эффективно укрепляет гемоглобиновую буферную систему, которая обеспечивает буферную емкость крови.
Следующая задача гликолитической тренировки направлена на совершенствование способности поддержания кислотнощелочного равновесия, которое обеспечивает осуществление физиологических процессов, протекающих в моторных единицах мышц.
В жидких средах организма находится определенная концентрация протонов водорода (Н+
) и гидроксильных ионов (ОН-).Протоны водорода (Н+
) образуются в основном при диссоциации (распаде на ионы) кислот. Сильные кислоты диссоциируют на ионы почти полностью, слабые – только частично.Гидроксилы (ОН-
) образуются при диссоциации оснований или сложных органических соединений, имеющих ОН-группы: NaOH – Na++OH-.Молекулы воды также увеличивают концентрацию Н+
и ОН- в среде. Вода является слабым электролитом и частично диссоциирует на ионы: Н2О = Н+ + ОН-.Протоны водорода легко гидратируются молекулами воды с образованием гидроксония Н3
О+, однако для простоты изложения его обозначают как протон Н+.Концентрация свободных протонов водорода в водной среде определяет ее кислотность, а концентрация гидроксилов – щелочность среды. Соотношение концентрации свободных протонов водорода и концентрации гидроксилов Н+
/ОН- определяет активную реакцию среды, т. е. ее кислотно-щелочное состояние. Постоянство активной реакции внутренней среды организма называется кислотно-щелочным равновесием. Если концентрация Н+ больше, чем ОН-, то водная среда кислая. Если гидроксилов больше, чем протонов водорода, – среда щелочная. При одинаковой их концентрации среда нейтральная. Для более точной характеристики активной реакции среды используют водородный показатель (рН). рН – это водородный показатель кислотнощелочного состояния водной среды организма.Определение рН крови и мочи спортсмена является важным диагностическим показателем в практике спорта, так как при физических нагрузках наблюдаются значительные изменения рН внутренней среды организма, что влияет на многие физиологические процессы:
• состояние белков, особенно ферментов, и их биологическую активность: каждый фермент имеет свое значение рН, при котором он наиболее активен; обычно высокая метаболическая активность отмечается в пределах величин рН биологической среды; изменение рН существенно снижает активность ферментов и скорость регулируемых ими процессов;
• сократительную активность белков актина и миозина: понижение рН в скелетных мышцах уменьшает образование актомиозиновых мостиков в миофибриллах и снижает силу мышечного сокращения;
• транспорт ионов и возбудимость плазматических мембран: при закислении среды нервных и мышечных клеток снижается проводимость Ка+
-К+ – насосов для ионов, что влияет на возбудимость этих тканей;