Помимо обычных услуг, математика может творить в науке поистине чудеса. Как маленький кудесник, она может сотворить нечто новое для дальнейшего использования. Допустим, например, что падающее тело обладает постоянным ускорением 9,8 м/сек2
и что любое движение, приданное ему вначале, попросту складывается с ускоренным движением. Тогда математическая машина возьмет ваше экспериментальное открытие, величинуБлестящее предположение о том, что это основное правило может быть общим, сделал не кто иной, как мы сами. Именно мы приветствовали такую подсказку машине, а затем проверили все[238]
. В качестве другого примера математики летящего снаряда рассмотрим уже встречавшуюся нам ранее задачу с двумя ответами.Задача 1
В птицу, сидящую на дереве на высоте 15 м, бросили вертикально вверх камень с начальной скоростью 20 м/сек. Через сколько секунд после броска камень попадет в нее? (g ~= 10 м/сек).
Фиг. 126.
Этот ответ характеризует алгебру как очень честного, но довольно глупого слугу. Получилось два ответа, как собственно и должно быть для задачи, предложенной машине. Камень может попасть в птицу, когда летит вверх (через 1 сек) и когда падает вниз (через 3 сек). Если вы упрекнете машину за второй ответ, она будет оправдываться так: «Но вы же ничего не сказали о том, что камень должен
Если в каком-нибудь ответе на задачу получаются 3 или 21
/4 коровы, мы вправе отбросить второй ответ, но вы сами виноваты, что не сообщили математической машине некие важные сведения о коровах. В физических задачах, где возникает несколько ответов, мы обычно без особого смысла отбрасываем некоторые из них. Все эти ответы могут быть совершенно правильными, если же некоторые из них слишком уж странные, то, признав их, мы можем прийти к новым выводам. Если вы вспомнитеА вот еще задача того же типа.
Задача 2
Человек бросает в колодец глубиной 30 м камень, который начинает падать вниз со скоростью 5 м/сек. Когда он достигнет дна?
Фиг. 127.
Припишем исходным данным подходящие знаки + и —, подставим их в подходящее выражение для свободного падения и решим уравнение. Получаются два ответа: один — разумный со знаком + («правильный» ответ), а другой с отрицательным знаком. Но так ли уж глуп отрицательный ответ?