Читаем Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия полностью

Время, равное —3 сек, просто означает: «За 3 сек до того, как были пущены часы». Машине не было сказано о том, что камень брошен вниз человеком. Ей только сообщили, что в нулевой момент, когда были пущены часы, камень двигался вниз со скоростью 5 м/сек, а после этого падал свободно. Камень в нулевой момент времени мог просто выскользнуть из рук. Он мог быть брошен задолго до этого вторым человеком со дна колодца — предположим, он швырнул его вверх с достаточной силой, чтобы камень получил нужную скорость в нулевой момент. Таким образом, хотя наша теория говорит: «Джордж, стоя на краю колодца, бросил вниз камень…», ответ — 3 сек свидетельствует совсем о другой истории: «Алфред, стоя на дне колодца, сильно бросил камень вверх. Камень вылетел из колодца с уменьшающейся скоростью, достиг высшей точки и начал падать с возрастающей скоростью, пролетев мимо Джорджа через 3 сек после того, как его бросил Алфред. Джордж не успел поймать камень (в момент t = 0), так что тот пролетел мимо него со скоростью 5 м/сек и снова упал на дно колодца». Согласно математике, камень достигнет дна через 1 сек после того, как его выпустит Джордж из рук, или же он мог бы начать движение со дна за 3 сек до того, как пролетит мимо Джорджа. Вернемся к задаче 15 приложения II гл. 1 и попытаемся пояснить полученные там два ответа.


Задача 3

Человек, стоящий на вершине башни высотой 15 м, бросает вверх камень со скоростью 10 м/сек. Какое время понадобится камню, чтобы достичь земной поверхности?



Фиг. 128. К задаче 3.


В этой задаче математика ведет себя как исключительно честный слуга, совсем так, как честный мальчик из историй «Папаши Брауна» Дж. Честертона. Посыльный мальчик принес в глухую деревушку одному скряге телеграмму. По ошибке скряга вместо 1/3 пенса (самой мелкой английской монеты из светлой бронзы) дал мальчику «на чай» золотой фунт. Как же поступил мальчик, когда обнаружил ошибку? Забрал золотой, бессовестно воспользовавшись ошибкой? С притворной добросовестностью принес ее назад, надеясь, что скряга, растрогавшись, скажет: «Возьми его себе, малыш!»? Нет, он не сделал ни того, ни другого. Он просто принес сдачу — 19 шиллингов и 11 3/4 пенса точно. «Наконец-то я нашел честного человека!» — воскликнул восхищенный скряга и завещал мальчику все свое золото. И мальчик, со своей тупой честностью, так буквально понял волю скряги, что снял даже золотые коронки с его зубов.


Математика — умный слуга

Самое удивительное — это то, что наша машина может приготовить «новый продукт» в таком виде, который соответствует совершенно новой точке зрения. Взглядом гения ученый может увидеть в новом смутные очертания виденного ранее, достаточные для работы воображения и проверки. Если мы попытаемся обойтись без математики, то потеряем нечто большее, нежели ясный язык: возможность стенографической записи рассуждений и мощное орудие переработки информации. Мы лишимся также части научного воображения на более высоком уровне.

С помощью математики можно закодировать современную науку в столь ясной форме, что в ней будет легче обнаружить простоту, которую многие ищут в науке. Это, однако, не грубая простота наподобие круговых орбит планет, а простота изощренная, понятная только на языке самой математики. Представим, например, что, ущипнув конец натянутой веревки, мы создали на ней горб (фиг. 129). Воспользовавшись вторым законом Ньютона, мы можем закодировать поведение горба в сложной математической форме. И совершенно неожиданно здесь явно проступит «математическое клеймо» волнового движения[240]. Математика предсказывает, что эта волна будет распространяться, и говорит, как, зная натяжение и массу веревки, вычислить скорость волны.

Еще один пример. Сто лет назад Максвелл с помощью математики свел воедино экспериментальные законы электромагнетизма и записал их в простой форме. Прежде всего он избавился от детален формы и размеров аппаратуры, как мы избавляемся от формы и размеров образца, вычисляя плотность металла по его весу и размерам. Удалив таким образом «граничные условия», Максвелл получил законы электричества, свойственные любой системе при любых обстоятельствах, как плотность свойственна любым образцам данного металла. Дифференциальное исчисление придало его законам окончательную форму, называемую дифференциальными уравнениями. Взгляните на них, пока не заботясь о понимании терминологии.

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки