а
— столкновениеВозьмем, к примеру, электрон из ускорителя на энергию два миллиона электрон-вольт, который вылетает со скоростью около 294 000 000 м/сек, или 0,98 с. Для него 1/√(1 — (98/100)2
) ~= 1/√(4/100) = 5. Таким образом, для покоящегося наблюдателя масса электрона в 5 раз больше массы покоя[260]. (А вот другой способ получить этот результат. Кинетическая энергия электрона равна 2 млн. эв, а энергия, связанная с массой покоя, 0,5 млн. эв. Следовательно, этот электрон имеет кинетическую энергию, соответствующую 4 массам покоя, что вместе с первоначальной массой дает 5 масс покоя).Фиг. 158.
Эта зависимость от скорости проверялась отклонением очень быстрых электронов (
Фиг. 159.
Измерение кривизны дает импульс каждого из электронов после соударения и импульс налетающего электрона до соударения. Измерение углов подтверждает пропорцию этих импульсов. Если для вычисления масс воспользоваться формулой нерелятивистской механики (E
кин = 1/2 mv2 и т. д.), предполагая упругое соударение, то масса налетающей частицы должна быть примерно в 4 раза больше массы частицы-мишени. Тем не менее следы выглядят как электронное соударение и мы не можем приписать двум электронам классические массыИМПУЛЬС = mv
и m = m0/√(1 — (v2/c2))Тогда все оказывается согласованным. Из величины магнитного поля и измерения кривизны находим:
ДО СОУДАРЕНИЯ
Поскольку следы коротки и слабо искривлены, радиус кривизны измерить очень точно не удается. Поэтому импульс налетающей частицы, а следовательно, ее масса определяются с точностью до 6 %. Другими словами, -
ПОСЛЕ СОУДАРЕНИЯ
где
Смысл изменения массы
Существует простая физическая интерпретация изменений массы: добавочная масса является массой, соответствующей кинетической энергии тела. Проверим это с помощью алгебры, воспользовавшись разложением радикала для достаточно малых скоростей в ряд:
= m
0 + (1/2)∙m0∙(v2/c2) +=
=
Максимальная скорость