Итак, мы без труда получили результат для
Это лишь небольшой шаг на пути поиска поэзии математического языка — всего лишь подходящий размер стиха. Следующим шагом должны быть не симметричная
Геометрия и наука: истина и общая теория относительности
Таким образом, математика далеко выходит за рамки рабочей арифметики и некоего «автомата». Для более полного расцвета и развития она даже избавляется от скучных определений и некоторых ограничений логики, но тем не менее вся математическая схема основана на собственных исходных положениях; сердца ее исследователей пленяют
Мы привыкли думать, что после того, как математики создали свой мир пространства и чисел, нам осталось ставить опыты и выяснять, насколько с ним согласуется наш мир. Евклид, например, выдвинув предположения относительно точек, линий и т. д., вывел из них непротиворечивую геометрию.
На первый взгляд из грубого сравнения с реальными окружностями и треугольниками, нарисованными на бумаге или начерченными на земле, кажется, что результаты системы Евклида правильно описывают природу. Однако чувствуется, что для проверки, насколько правильно Евклид выбрал свои предположения и точно ли они воспроизводят природу, нужны все более и более точные эксперименты. Например, будут ли три угла треугольника составлять точно 180°[263]. Релятивистская механика и размышления о строении Вселенной поднимают серьезный вопрос о выборе наиболее подходящей геометрии. Математики давно знают, что евклидова геометрия — одна из нескольких возможных, которые совпадают в малом масштабе, но радикально отличаются по своей физической и философской природе в большом масштабе.
Что же такое общая теория относительности и как она влияет на наши представления о физике и геометрии?
Фиг. 171.
Эйнштейновский принцип эквивалентности