Подставив значение скорости спутника, найдем для кинетической энергии выражение γ∙
При наличии трения полная энергия будет падать, т. е. (поскольку она отрицательна) расти по абсолютной величине; расстояние R начнет уменьшаться: спутник снижается. Что при этом произойдет со слагаемыми энергии? Потенциальная энергия убывает (растет по абсолютной величине), кинетическая энергия растет.
Общий баланс все же отрицателен, так как потенциальная энергия убывает вдвое быстрее, чем возрастает кинетическая.
Трение приводит к возрастанию скорости движения спутника, а не к замедлению.
Теперь понятно, почему большая ракета-носитель обгоняет маленький спутник. У большой, но пустой ракеты трение больше.
К сегодняшнему дню мы уже были свидетелями многих путешествий на Луну. Автоматические ракеты и ракеты с людьми побывали на Луне и возвратились оттуда обратно.
Ракеты без людей побывали уже на Марсе. Не за горами посещение других планет, их исследование и возвращение на Землю людей или автоматических устройств.
Главные закономерности межпланетных путешествий, а именно принцип действия ракеты и расчет космических скоростей, нужные для того, чтобы создать спутник небесного тела или покинуть планету «насовсем», мы уже выяснили.
В качестве примера межпланетного путешествия мы рассмотрим полет на Луну. Для попадания на Луну нужно нацелить ракету на точку лунной орбиты. В эту точку Луна должна подойти одновременно с ракетой. Можно отправить ракету по прямолинейной траектории, можно и под любым углом. Разумеется, не противопоказан и горизонтальный полет. Для того чтобы снаряд достиг Луны, ему должна быть придана вторая космическая скорость.
Различные траектории полета требуют разного количества топлива, так как отличаются потерями на разгон. Время полета очень резко зависит от начальной скорости. Если скорость минимальна, то время полета будет около пяти суток. Если скорость увеличить на 0,5 км/с, то это время уменьшится до одних суток.
На первый взгляд может показаться, что для прилунения достаточно попасть в сферу притяжения Луны с нулевой конечной скоростью. Представляется, что после этого аппарат просто «упадет» на Лупу. Ошибка в этом рассуждении состоит вот в чем. Когда ракета будет иметь скорость, равную нулю по отношению к Земле, то по отношению к Луне она будет иметь скорость Луны, направленную в обратную сторону.
На рис. 6.9 изображена траектория ракеты, запущенной из точки
Когда ракета вошла в сферу действия Луны в точку В, сама Луна находится в точке
Рассматривая ракету с Луны, мы можем быть уверены, что она придет под прямым углом к поверхности Луны, если ее скорость равна
Все же у нас есть некоторая свобода. Не обязательно, чтобы вектор скорости v смотрел на центр Луны. Вдобавок и само притяжение Луны увеличивает допустимые погрешности.
Расчеты показывают, что все эти допущения, весьма малы и точность в значениях начальной скорости должна быть порядка нескольких метров в секунду. Угол, под которым отправляется ракета, должен устанавливаться с точностью до десятой градуса, а время отправления не должно отличаться от расчетного более чем на несколько секунд.
Итак, ракета входит в область действия Луны со скоростью, отличной от нуля. Расчет показывает, что эта скорость