Читаем Физика повседневности. От мыльных пузырей до квантовых технологий полностью

Принцип неопределенности позволяет получить интересную информацию о движении атомов в твердых телах. Под твердыми телами здесь мы будем подразумевать кристаллы (см. главу 9), поскольку при низких температурах кристаллическая структура является устойчивой формой существования почти всех чистых веществ. Атомы в кристалле не являются неподвижными: они колеблются вокруг положения равновесия. Амплитуда этих колебаний очень мала: расстояние между двумя соседними атомами всегда остается близким к своему среднему значению, которое составляет около нескольких десятых нанометра. Как правило, эти колебания обусловлены тепловым движением: чем температура выше, тем больше амплитуда колебаний (см. главу 22, врезку «Броуновское движение»). Что же происходит, когда температура опускается до абсолютного нуля (0 К, то есть –273,15 °C)? Можно предположить, что колебания прекращаются и атомы замирают. Однако в этом случае их положение было бы точно фиксировано, в то время как скорость была бы равна нулю, то есть Δx = Δp = 0, что нарушило бы соотношение неопределенности (1) (см. главу 22). Отсюда следует, что движение атомов прекратиться не может даже при абсолютном нуле температур: в этом случае тепловые колебания сменяются на «нулевые колебания».

Попробуем разобраться в этом подробнее на примере простого кристалла, состоящего из атомов лишь одного сорта (например, водорода, кислорода, железа). Упрощенное, но качественно приемлемое описание движения атома в кристалле относительно его соседей можно получить, предполагая, что при отклонении от положения равновесия на него действует возвращающая сила, пропорциональная расстоянию, так как если бы его удерживала пружина. В таком случае движение атома относительно положения равновесия описывается формулой x (t) = x0 cos (ωt – α), где x0 – максимальная амплитуда колебаний (для двух других координат формулы аналогичны). При этом скорость атома vx (t) = –ωx0 sin (ωt – α). Соотношение неопределенности требует, чтобы ΔxΔvħ/m, и, следовательно, ωx02 было не менее ħ/m, где m – масса атома. Частота ω для большинства веществ лежит в диапазоне между 1013 и 1014 Гц (характерную частоту колебаний атома в твердых телах называют частотой Дебая). Заменяя массу m на Amn, где A – массовое число (см. главу 13, врезку «Элементы ядерной физики»), а mn – средняя масса нуклона (около 1,67⋅10–27 кг), получим, что x0 в метрах должна составлять не менее  Это условие устанавливает верхнюю границу для амплитуды нулевых колебаний в 1/100 нм, которая, как правило, мала в сравнении с равновесным расстоянием между соседними атомами. Поэтому нет оснований полагать, что нулевые колебания в твердых телах разрушают его устойчивость.

Сомнения могут оставаться только для наименьших значений A, то есть для водорода (A = 1) и гелия (A = 4). Оказывается, что только гелий (He) является исключением из правила: если давление не превышает 2,5 Мпа, то нулевые колебания действительно делают его кристаллическое состояние неустойчивым при любых температурах. Все остальные простые тела, включая водород H2, при приближении температуры к абсолютному нулю рано или поздно затвердевают при любом давлении.

Квантование магнитного момента

Мы уже видели, что согласно квантовой механике ни в какой момент времени невозможно установить точные значения положения r и скорости v электрона, вращающегося вокруг ядра. Еще более необычными оказываются свойства его магнитного момента.

Магнитный момент – это векторная величина, характеризующая свойство определенных объектов ориентироваться в магнитном поле. Например, стрелка компаса располагается по магнитному полю Земли, указывая направление на Северный магнитный полюс. Многие из элементарных частиц и объектов атомного масштаба также обладают магнитным моментом: электрон, нейтрон, протон, а также бо́льшая часть ядер, атомов и ионов.

Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга I. Обезьяны, кости и гены
Эволюция человека. Книга I. Обезьяны, кости и гены

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и эволюционной психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу. Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература