Пребывая в своем основном состоянии (минимума полной энергии), атом терять энергию не может. Однако он может ее получать, переходя при этом в то или иное «возбужденное» состояние. При этом бесконечно долго возбужденным он не остается – через некоторое время, излучая свет, атом возвращается в свое основное состояние. Этот свет соответствует излучению точно определенных частот, то есть спектр излучения атома является «линейчатым» (см. главу 7, «От спектров атомов до спектра абсолютно черного тела»). Частоты спектральных линий образуют так называемое дискретное множество, то есть их можно пронумеровать, например, в зависимости от интенсивности каждой из них. Чтобы объяснить происхождение такого линейчатого спектра, разумно предположить, что значения, которые может принимать энергия данного атома, также составляют дискретное множество. Поскольку свет может излучаться только в виде фотонов (см. главу 7, «От спектров атомов до спектра абсолютно черного тела»), то закон сохранения энергии требует, чтобы энергия hυ каждого фотона была равна разности между двумя допустимыми значениями энергии атома (илл. 4). Таким образом, дискретный вид спектра излучения объясняется, по крайней мере, качественно. Остается выяснить, почему значения энергии атома составляют дискретное множество.
В начале XX века вопрос о природе атома – мельчайшей частицы вещества, являющейся носителем его свойств, – был одним из центральных в физике. Предлагаемые модели, будучи внутренне противоречивыми или не соответствующими эксперименту, одна за другой опровергались. И вот в 1913 году датский физик Нильс Бор (илл. 2, справа) предложил математически простую теорию атома, объясняющую существующие экспериментальные данные, однако основанную на столь необычных допущениях, что он сам назвал их постулатами.
4.
Энергетическая диаграмма атома водорода. Атом переходит из основного состояния в возбужденное путем поглощения фотона, энергия которого ΔАтом по Нильсу Бору
Нильс Бор, предлагая свою модель атома, ничего не знал о принципе неопределенности, до открытия которого оставалось еще 14 лет. В модели Бора, как и в модели Резерфорда, электрон вращается вокруг ядра, подобно тому как Земля вращается вокруг Солнца, однако при этом электрон может двигаться только по определенным орбитам (илл. 5). Например, круговые орбиты возможны только в том случае, когда произведение импульса
5.
Атом водорода в представлении Резерфорда и Бора в начале XX векаОднако импульс электрона и радиус орбиты связаны также и тем обстоятельством, что действующая на электрон центробежная сила (см. главу 4, «Еще одна фиктивная сила: центробежная»), равная
Модель Бора, разработанная в 1913 году, довольно хорошо описывала спектры излучения атомов (илл. 6), однако вскоре выявились и ее недостатки. Спустя десять лет теория Бора была концептуально расширена введением вероятностного описания нахождения электрона. Так оказалось, что значение
6.
Модель Бора позволяет объяснить спектр излучения атома водорода в видимой области. Линии, расположенные вблизи длин волн излучения в 410, 434, 486 и 656 нм, соответствуют переходам на уровень, соответствующийВероятность нахождения
Предположим, что в какой-то момент нам удалось установить положение электрона. Можно ли предсказать его положение через секунду? Нет, поскольку знание положения электрона неизбежно привело бы к полной неопределенности его скорости. Ни один прибор, ни одна теория не смогли бы предсказать, куда направится электрон. Так что же делать?
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное