Читаем Физика повседневности. От мыльных пузырей до квантовых технологий полностью

1900 год, знаменующий начало XX века, является еще и датой возникновения квантовой механики. Именно тогда Макс Планк нашел решение задачи, поставленной Густавом Кирхгофом четырьмя десятилетиями ранее (см. главу 7, «Формула Планка»). Решение Планка основывалось на предположении, что энергия физической системы квантуется, то есть, например, если монохроматический свет частотой υ заключен в зеркальной камере, то его энергия обязательно окажется кратной одному «кванту» энергии, равному hυ, где h – постоянная Планка. Сперва эта гипотеза казалась относительно невинной. Однако спустя тридцать лет выяснилось, что она бросает вызов детерминистическому пониманию физики…

Принцип неопределенности

В 1927 году немецкий физик Вернер Гейзенберг сформулировал следующий принцип, называемый принципом неопределенности. Рассмотрим частицу массой m, которая движется по оси Ox со скоростью v. Если нам удастся измерить ее скорость с точностью Δv, то ее положение x оказывается невозможным определить с точностью Δx более высокой, чем ħ/(mΔv), где ħ = 1,054⋅10–34 Дж⋅с[26]. Иными словами, mΔxΔvħ. Это утверждение можно распространить и на движение частицы, перемещающейся в трехмерном пространстве. Вместо того чтобы рассуждать о ее скорости v, часто вводят импульс p = mv. В этом случае соотношение неопределенности записывают следующим образом:

ΔxΔpx ħ. (1)

Аналогично оно записывается и для двух других составляющих вектора импульса и координат.

Это неравенство удивительно. Законы Ньютона, о которых мы говорили в главе 4, врезке «Ньютоновская механика», позволяют, исходя из начальных условий, очень точно определить положение и скорость объекта в любой момент времени. В физике Ньютона, так называемой классической механике, нет места для неопределенности. Но этот детерминизм, свойственный макроскопическому миру, перестает действовать в атомном масштабе. Объясним, почему это происходит.

Для начала приведем иллюстрацию соотношений неопределенности. Направим поток частиц (например, электронов или нейтронов) на стенку, в которой есть отверстие диаметром Δx (илл. 1). Некоторые из них пролетят через отверстие. В момент прохождения их положение определяется в плоскости стенки с точностью Δx. При этом параллельные этой плоскости составляющие их скорости могут быть известны только с некоторой неопределенностью, обратно пропорциональной Δx. Даже если скорость какой-то частицы при подлете строго перпендикулярна стенке, то после прохода через отверстие скорости всех прошедших частиц распределятся внутри некоторого телесного угла. Таким образом, здесь мы сталкиваемся с тем же явлением дифракции, что и в случае световых лучей, проходящих через узкую щель (см. главу 4, илл. 6).


1. Если частица проходит через отверстие или щель ширины Δx, то ее положение в направлении x известно с точностью Δx. Согласно найденному Гейзенбергом неравенству, ее импульс в этом направлении может быть известен только с некоторой точностью Δpx. Если частица является частью пучка, с импульсом pz вдоль оси Oz, то прохождение пучка через щель вызывает его расхождение под углом, определяемым отношением Δpx/pz


Неопределенность и измерение

Согласно толкованию Гейзенберга (илл. 2, слева), квантовый индетерминизм является результатом взаимодействия наблюдаемой частицы с измерительным прибором. Вот как он рассуждал.

Предположим, мы хотим проанализировать движение электрона. Как это сделать? Невооруженный глаз, очевидно, не обладает достаточным разрешением, а что насчет микроскопа? Разрешение микроскопа определяется диапазоном длин волн λ наблюдаемого излучения. Для света они составляют порядка 100 нм (то есть 100 миллиардных частей метра), частицы меньшего размера не будут видны. Поэтому с помощью микроскопа невозможно увидеть атомы, размер которых составляет порядка 0,1 нм, и тем более – обнаружить электроны. Предположим, однако, что нам удалось сделать микроскоп с использованием электромагнитного излучения более короткой длины волны: рентгеновского или даже γ-излучения, длина волны которого составляет менее 0,01 нм (см. главу 3, «Цветовое зрение»). Стало бы такое изобретение идеальным инструментом для точного измерения положения и скорости электрона?

Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга I. Обезьяны, кости и гены
Эволюция человека. Книга I. Обезьяны, кости и гены

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и эволюционной психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу. Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература