1900 год, знаменующий начало XX века, является еще и датой возникновения квантовой механики. Именно тогда Макс Планк нашел решение задачи, поставленной Густавом Кирхгофом четырьмя десятилетиями ранее (см. главу 7, «Формула Планка»). Решение Планка основывалось на предположении, что энергия физической системы квантуется, то есть, например, если монохроматический свет частотой υ заключен в зеркальной камере, то его энергия обязательно окажется кратной одному «кванту» энергии, равному hυ, где h – постоянная Планка. Сперва эта гипотеза казалась относительно невинной. Однако спустя тридцать лет выяснилось, что она бросает вызов детерминистическому пониманию физики…
Принцип неопределенности
В 1927 году немецкий физик Вернер Гейзенберг сформулировал следующий принцип, называемый принципом неопределенности. Рассмотрим частицу массой
Δ
Аналогично оно записывается и для двух других составляющих вектора импульса и координат.
Это неравенство удивительно. Законы Ньютона, о которых мы говорили в главе 4, врезке «Ньютоновская механика», позволяют, исходя из начальных условий, очень точно определить положение и скорость объекта в любой момент времени. В физике Ньютона, так называемой классической механике, нет места для неопределенности. Но этот детерминизм, свойственный макроскопическому миру, перестает действовать в атомном масштабе. Объясним, почему это происходит.
Для начала приведем иллюстрацию соотношений неопределенности. Направим поток частиц (например, электронов или нейтронов) на стенку, в которой есть отверстие диаметром Δ
1.
Если частица проходит через отверстие или щель ширины ΔНеопределенность и измерение
Согласно толкованию Гейзенберга (илл. 2, слева), квантовый индетерминизм является результатом взаимодействия наблюдаемой частицы с измерительным прибором. Вот как он рассуждал.
Предположим, мы хотим проанализировать движение электрона. Как это сделать? Невооруженный глаз, очевидно, не обладает достаточным разрешением, а что насчет микроскопа? Разрешение микроскопа определяется диапазоном длин волн λ наблюдаемого излучения. Для света они составляют порядка 100 нм (то есть 100 миллиардных частей метра), частицы меньшего размера не будут видны. Поэтому с помощью микроскопа невозможно увидеть атомы, размер которых составляет порядка 0,1 нм, и тем более – обнаружить электроны. Предположим, однако, что нам удалось сделать микроскоп с использованием электромагнитного излучения более короткой длины волны: рентгеновского или даже γ-излучения, длина волны которого составляет менее 0,01 нм (см. главу 3, «Цветовое зрение»). Стало бы такое изобретение идеальным инструментом для точного измерения положения и скорости электрона?
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное