1
. Ток в кольце радиуса R. Поток магнитной индукции через кольцо Φ =Правило квантования Бора, примененное к движению куперовских пар в сверхпроводящем кольце (см. главу 24, «Теория БКШ»), имеет неожиданное следствие: магнитный поток через сверхпроводящее кольцо квантуется – так же как и радиус орбиты в атоме! Точнее, магнитный поток Φ оказывается целым кратным «кванта магнитного потока»:
Φ0
= πгде – е – заряд электрона (см. врезку «Квантование потока в витке сверхпроводника»).
Квант потока Φ0
– чрезвычайно малая величина, настолько малая, что первую экспериментальную проверку гипотезы Лондона американским физикам Бэскому Диверу и Уильяму Фэйрбэнку удалось провести только 13 лет спустя, в 1961 году.Примечательно, что в то время, как квантованные физические величины, упоминаемые нами до сих пор, принадлежали к микроскопическому миру, квант магнитного потока ученым удается измерить в относительно больших, почти макроскопических образцах (то есть видимых невооруженным глазом). Примером таких «мезоскопических», то есть промежуточных между микро- и макромирами объектов, являются вихри Абрикосова, которые могут находиться друг от друга на расстояниях в микрометры. Напомним, что эти вихри возникают в сверхпроводнике II рода, помещенном во внешнее магнитное поле (см. главу 24, «Вихри Абрикосова»). Каждый абрикосовский вихрь является носителем кванта магнитного потока Φ0
. Еще одним подобным примером являются сверхпроводящие кольца, которые позволяют наблюдать дискретное изменение пронизывающего их магнитного потока буквально по одному кванту Φ0 (см. ниже). Подобные наблюдения аналогичны историческому эксперименту Дивера и Фэйрбэнка 1961 года. Вместо кольца они использовали сверхпроводящий цилиндр.Квантование потока в витке сверхпроводника
Найдем с помощью упрощенных рассуждений формулу, описывающую квантование потока в сверхпроводнике. Рассмотрим случай кругового кольца с нулевым сопротивлением, содержащего свободные заряженные частицы. С возрастанием магнитного поля растет и магнитный поток Φ, что приводит к возникновению электродвижущей силы индукции (см. главу 16, «Электромагнитная индукция»):
где ΔΦ – изменение потока, происходящее за время Δ
Теперь рассмотрим заряд q массы
откуда находим, что
Предполагая, что правило квантования Бора
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное