Читаем Физика повседневности. От мыльных пузырей до квантовых технологий полностью

Самый простой квантовый магнитометр состоит из сверхпроводящего кольца с тончайшей диэлектрической перемычкой (илл. 3a). Представим себе, что это кольцо помещают во внешнее магнитное поле, которое вначале, как и ток в контуре, равно нулю. Тогда поток внутри кольца тоже равен нулю. Начнем увеличивать внешнее поле. Пока поле не слишком велико, проходящий через кольцо общий магнитный поток Φ должен оставаться неизменным и равным нулю (см. главу 25, «Квантование магнитного потока в сверхпроводящем кольце»). Для этого необходимо, чтобы создаваемый протекающим по кольцу током I магнитный поток ΦI в каждый данный момент компенсировал изменение внешнего потока Φвнеш. По мере возрастания магнитного поля этот ток увеличивается вплоть до достижения критического значения Iк (за счет выбора сопротивления диэлектрической перемычки можно добиться того, что это произойдет при Φвнеш= Φ0/2. Здесь Φ0 = h/2e = 2,07∙10-15Вб – так называемый квант магнитного потока).


3. a. Сверхпроводящее кольцо с джозефсоновским контактом помещается во внешнее магнитное поле B. b. При монотонном росте внешнего потока Φвнеш = BS полный магнитный поток Φ меняется скачками. c. Величина I сверхпроводящего тока не может превышать критическое значение Iк, определяемое свойствами контакта, и, следовательно, изменяется пилообразно. Ток меняет знак, когда сверхпроводимость в контакте разрушается (здесь мы рассматриваем случай, когда критическое значение тока Iк достигается при увеличении внешнего потока на Φ0/2)


Как только ток станет равным Iк, сверхпроводимость в месте слабой связи разрушится и в контур войдет квант потока Φ0. Общий магнитный поток возрастет на один квант. Такое изменение возможно только благодаря разрушению сверхпроводимости в области перемычки, что и делает устройство настолько необыкновенным!

А что произойдет с током? Его величина останется прежней, но направление изменится на противоположное. Действительно, если до вхождения кванта потока Φ0 ток Iк полностью экранировал внешний поток, то после его вхождения он должен усиливать внешний поток Φ0/2 до значения Φ0. Поэтому в момент вхождения кванта потока направление тока скачком меняется на противоположное.

При дальнейшем увеличении внешнего поля ток в кольце начнет уменьшаться, сверхпроводимость в кольце восстановится и поток внутри кольца будет оставаться равным Φ0. Ток в контуре обратится в ноль, когда внешний поток также станет равным Φ0, а затем он начнет течь в обратном направлении. Наконец, при значении внешнего потока 3Φ0/2 ток опять станет равным Iк, сверхпроводимость разрушится, войдет следующий квант потока и т. д. (илл. 3с).

Ступенчатый характер зависимости тока как функции магнитного потока позволяет измерять значение внешнего поля с необычайной точностью. Однако остается проблема измерения тока в кольце с туннельным контактом.


4. Принцип действия СКВИД. Магнитометр состоит из сверхпроводящего кольца с двумя джозефсоновскими контактами. Ток I, протекающий в СКВИД, разделяется на две ветви. Если устройство поместить во внешнее магнитное поле B, то эти два тока интерферируют, что приводит к разнице потенциалов между туннельными контактами, измерение которой позволяет узнать значение поля


Магнитометр СКВИД

Часто в сверхпроводящем кольце вместо одного создается сразу два джозефсоновских контакта. Таким образом получается «сверхпроводящий квантовый интерферометр», или СКВИД (от англ. SQUID, Superconducting Quantum Interference Device) (илл. 4). Принцип его работы основан на интерференции волновых функций двух сверхпроводящих конденсатов, разделенных джозефсоновскими контактами, которую можно сопоставить с интерференцией, происходящей в двух расположенных рядом щелях Юнга в оптике (см. главу 3, «Квантование магнитного потока в сверхпроводящем кольце»).

С помощью сложных устройств (генераторов, усилителей) СКВИД может измерить колебания потока, намного меньшие, чем квант Φ0. Он настолько чувствителен, что обнаруживает магнитные поля, возникающие в результате сердечной или мозговой активности! Эти поля в 100 000 раз слабее, чем магнитное поле Земли (величина которого около 5∙10–5 Тл на ее поверхности). Первые попытки применения СКВИД в медицине, например магнитокардиография и магнитоэнцефалография (илл. 5), относятся к 1970-м годам. Чтобы свести к минимуму влияние магнитного поля Земли на измерения, их выполняли в специальной комнате: стены состояли из трех слоев металла, образующих мощные магнитные экраны, разделенные еще и двумя слоями алюминия, препятствующими проникновению электрического поля. Таким образом, магнитное поле Земли, внутри объема, уменьшалось в 10 000 раз. Однако создание таких помещений обходилось очень дорого. Сегодня благодаря достижениям техники в области сверхпроводников магнитометры уже не требуют наличия магнитного экрана и способны измерять магнитные поля с точностью до 10–15 Тл! Единственное, что должен сделать пациент, – убрать все металлические предметы, например ключи из кармана.


Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Эволюция человека. Книга I. Обезьяны, кости и гены
Эволюция человека. Книга I. Обезьяны, кости и гены

Новая книга Александра Маркова – это увлекательный рассказ о происхождении и устройстве человека, основанный на последних исследованиях в антропологии, генетике и эволюционной психологии. Двухтомник «Эволюция человека» отвечает на многие вопросы, давно интересующие человека разумного. Что значит – быть человеком? Когда и почему мы стали людьми? В чем мы превосходим наших соседей по планете, а в чем – уступаем им? И как нам лучше использовать главное свое отличие и достоинство – огромный, сложно устроенный мозг? Один из способов – вдумчиво прочесть эту книгу. Александр Марков – доктор биологических наук, ведущий научный сотрудник Палеонтологического института РАН. Его книга об эволюции живых существ «Рождение сложности» (2010) стала событием в научно-популярной литературе и получила широкое признание читателей.

Александр Владимирович Марков

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Пираты. Рассказы о знаменитых разбойниках
Пираты. Рассказы о знаменитых разбойниках

Эта увлекательная книга, посвященная истории морского пиратства, уникальна широтой охвата темы: в ней рассказано о датских, норманнских, испанских, вест-индских, малайских, алжирских и многих других жестоких и беспощадных морских разбойниках, наводивших страх на моряков и мирный торговый люд в разных районах Мирового океана. Повествования о жизни флибустьеров, дополненные материалами судебных процессов, отчетами адмиралтейства, рассказами несчастных, попавших в руки пиратов, о страданиях и злоключениях, которые им пришлось пережить, позволят узнать много интересного всем, кто интересуется захватывающими историями о людях, плававших под черным флагом много лет назад.

Чарльз Элмс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература