Для получения сильных магнитных полей создание сплава с подходящими критическими параметрами необходимо, но недостаточно. Из него еще нужно изготовить кабель! Олово-ниобиевый сплав хрупок, и сделанный из него кабель ломается при малейшем скручивании. Эта проблема была решена путем заполнения медной трубки порошкообразной смесью ниобия и олова. Затем эту трубку растягивают (проволакивают) таким образом, чтобы получить провод, который после этого нагревают. Порошок, плавясь, дает желаемый сплав олова и ниобия. Описанный процесс лежит в основе создания так называемых композитных сверхпроводников. Их получают, просверливая в медной матрице параллельные каналы и вставляя в них сверхпроводящие волокна. Матрица подвергается процедуре волочения, и полученный провод в свою очередь снова вставляется в отверстия следующей матрицы и т. д. Повторив эту процедуру несколько раз, получают кабель, содержащий миллионы сверхпроводящих волокон (илл. 8). Например, в катушке, используемой для международного экспериментального термоядерного реактора ITER (о котором будет рассказано ниже), каждый сверхпроводящий кабель состоит из 900 сверхпроводящих волокон, изготовленных из олово-ниобиевого сплава Nb3
Sn и 522 медных нитей диаметром 0,8 мм, которые делятся на шесть «лепестков». Каждое из сверхпроводящих волокон состоит из примерно 9000 нитей Nb3Sn диаметром несколько микрометров, утопленных в медной матрице. Общее количество нитей в кабеле превышает 8 млн. Конечно, то же самое можно проделать с любым другим сплавом, например ниобиево-титановым сплавом NbTi, более распространенным и менее дорогостоящим, чем сплав Nb3Sn.Для чего же сочетают медные и сверхпроводящие нити? Дело в том, что использование кабеля, состоящего из чистого сверхпроводника, рискованно. Сверхпроводимость может неожиданно в каком-то месте исчезнуть, например, из-за добавленных для пиннинга вихрей дефектов. При этом соответствующий участок кабеля под воздействием протекающего через него сильнейшего тока быстро нагревается, и если выделяющееся тепло не будет вовремя отведено, то весь кабель может целиком перейти в нормальное состояние. Это приведет к катастрофическим последствиям: от серьезного повреждения кабеля до разрушения близлежащих объектов. Наличие меди, хорошего проводника тепла, предотвращает такую катастрофу.
После открытия Беднорцем и Мюллером многочисленных способов применения (см. главу 24, «На берегу Цюрихского озера») нового класса сверхпроводников с высокой критической температурой ученые надеялись в скором времени сотворить чудеса, ведь для охлаждения здесь можно пользоваться дешевым жидким азотом, да и критические поля обещали превысить 100 Тл. Но на практике реализация их планов оказалась далеко не простой. Трудности в создании сверхпроводящих кабелей на основе новых материалов во многом оказались аналогичными тем, которые возникали при использовании традиционных сверхпроводников, например сплава Nb3
Sn: большая хрупкость материалов, проблемы, связанные с пиннингом решетки вихрей Абрикосова. Задача дополнительно осложнилась и рыхлостью вихрей вдоль их оси, обусловленной слабой связью между слоями в квазидвумерных высокотемпературных сверхпроводниках. Тем не менее хорошие результаты были достигнуты путем создания композитных материалов на основе сверхпроводящих оксидов и серебра, а некоторые сверхпроводящие кабели на основе YBaCuO уже запущены в производство.Где же работают сверхпроводники?
Сегодня магнитные поля, создаваемые сверхпроводящими магнитами, достигают величин в несколько десятков тесла. Зачастую эти магниты имеют гибридную структуру: внешняя сверхпроводящая катушка создает свое магнитное поле, а внутренняя – с медной обмоткой – дополнительно усиливает его в своем объеме. Такие катушки используются, например, в Национальной лаборатории высоких магнитных полей в Гренобле, где создают непрерывные магнитные поля, достигающие почти 40 Тл (именно здесь был обнаружен квантовый эффект Холла, см. главу 28, «Квантовый эффект Холла»).
Совсем недавно исследователи из Национальной лаборатории сильных магнитных полей в США разработали самый мощный в мире сверхпроводящий магнит, способный создавать магнитное поле с рекордными 45,5 Тл. В другом филиале французской Национальной лаборатории высоких магнитных полей в Тулузе производят еще более высокие импульсные магнитные поля, достигающие 100 Тл, но это делается иными методами, без использования сверхпроводимости.
Использование сверхпроводящих катушек не ограничивается лабораториями. Они ежедневно используются в больницах для проведения исследований посредством МРТ (см. главу 27), которые требуют интенсивного и однородного поля.
Упомянем еще два важнейших направления использования сверхпроводящих магнитов: в ускорителях при исследовании физики элементарных частиц и в качестве важного элемента прототипов термоядерных реакторов.
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное