Читаем Физика пространства - времени полностью

б) Возьмём другой частный случай, на этот раз когда проекция оси вращения параллельна оси 𝑥 (𝑥𝑦 — плоскость орбиты). Покажите, что теперь наблюдатели в лабораторной системе отсчёта и в системе отсчёта ракеты будут согласны между собой в том, что точки 𝑃 и 𝑄 пересекают ось 𝑦 одновременно. Поэтому в данном случае при огибании электроном угла в лабораторной системе отсчёта будет отсутствовать поворот оси вращения электрона.

Рис. 133. Общий случай изменения ориентации оси вращения электрона, когда последний меняет направление своего движения.

в) В процессе движения электрона по орбите проекция его оси вращения на плоскость 𝑥𝑦 (рис. 127) будет иногда параллельна направлению его движения (случай (а)), а иногда — перпендикулярна этому направлению (случай (б)). В общем случае она будет составлять некоторый угол φ с направлением движения электрона, меняющийся на 𝑑φ, когда электрон огибает угол. Чему может быть равна величина этого изменения, 𝑑φ? При φ=0 [случай (а)] 𝑑φ=-β𝑟²sin α; при φ=90° [случай (б)] 𝑑φ=0. В общем случае изменение должно лежать между нулём и -β𝑟²sin α. Исходя из рис. 133, проведём следующие рассуждения, чтобы показать, что при малых α и β𝑟² искомое изменение равно -β𝑟²sin α cos²φ. Дополним первоначальную линию 𝑃𝑄 её горизонтальной и вертикальной составляющими 𝑃𝑅 и 𝑄𝑅. Из пунктов (а) и (б) мы знаем, что вертикальный отрезок 𝑄𝑅 не подвергнется повороту, когда электрон обогнёт угол, тогда как горизонтальный отрезок 𝑃𝑅 повернётся по часовой стрелке на угол β𝑟²sin α. Покажите, что при малых углах α это приводит к неизменности 𝑥-компоненты 𝑃𝑄 и уменьшению 𝑦-компоненты на величину (𝐿 cos φ)⋅(β𝑟²sin α). Поэтому тангенс нового угла φ+𝑑φ равен

tg(φ+𝑑φ)

𝐿 sin φ-(𝐿 cos φ)(β𝑟²sin α)

𝐿 cos φ

=

=

tg φ

-

β

𝑟

²sin α

.

(131)

Требуется найти tg 𝑑φ≈𝑑φ; согласно табл. 8,

tg 𝑑φ

=

tg[(φ+𝑑φ)-φ]

=

tg(φ+𝑑φ)-tg φ

1+tg(φ+𝑑φ)⋅tg φ

.

Используя равенство (131), получим

tg 𝑑φ

=

tg φ-β𝑟²sin α-tg φ

1+(tg φ-β𝑟²sin α) tg φ

=

=

𝑟²sin α

1+tg²φ-β𝑟²sin α tg φ

.

При очень малых α можно пренебречь последним слагаемым в знаменателе, где останется тогда сумма

1+tg²φ

=

1+

sin²φ

cos²φ

=

cos²φ+sin²φ

cos²φ

=

1

cos²φ

,

так что

tg 𝑑φ

𝑑φ

=-

β

𝑟

²sin α

cos²φ

.

(132)

Это и есть тот угол, на который поворачивается (прецессирует) ось вращения электрона, когда последний огибает угол, изменяя направление своего движения на α, в общем случае ориентации проекции этой оси вращения на плоскость орбиты под углом φ к направлению движения электрона.

г) Из уравнения (132) видно, на какой угол 𝑑φ поворачивается вектор спина электрона, когда электрон изменяет направление своего движения на α, один раз огибая угол. Чему будет тогда равен полный угол прецессии Δφ при обходе электроном всей замкнутой орбиты? (См. рис. 127 и 128). В замкнутой орбите содержится 𝑛 поворотов, каждый из которых происходит на угол α=2π/𝑛. При больших 𝑛 (малых α) sin α≈α так что полный угол прецессии спина при одном обороте электрона вокруг ядра составляет

Δ

φ

≈-

β

𝑟

²(𝑛α)

〈cos²φ〉

ср

≈-

β

𝑟

²

〈cos²φ〉

ср

.

Чему равен множитель 〈cos²φ〉ср? Предположим, что полный угол прецессии Δφ за один оборот является малым (скорость β𝑟 мала!). Тогда при обходе электроном его орбиты угол φ между переменным направлением движения и проекцией оси вращения на плоскость орбиты пробежит все значения от 0 до 2π. Покажите, что в этом случае

〈cos²φ〉

ср

=

1

0

cos²φ

𝑑φ

=

1

2

.

Поэтому полный угол прецессии спина электрона за один полный оборот по орбите равен

Δ

φ

=-

πβ

𝑟

²

(угол прецессии за один оборот).

(133)

д) Электрон, двигающийся со скоростью β=β𝑟, за один полный оборот по орбите прецессирует на угол Δφ=-πβ𝑟²=-πβ². Покажите, что электрону требуется совершить 2π/Δφ=2/β² оборотов вокруг ядра, чтобы прецессия возвратила его в прежнее положение (прецессия на 2π рад). Примем теперь боровскую частоту обращения электрона вокруг ядра за ν𝐵 Покажите, что частота прецессии Томаса ν𝑇 (частота прецессии спина электрона) выражается через боровскую частоту как

ν𝑇

ν𝐵

1

2

β²

 (частота прецессии Томаса).

(134)

Мы знаем из упражнения 101, что скорость движения электрона на орбите в элементарной теории Бора равна

β

=

α𝑍

𝑛

=

𝑍

137𝑛

.

Здесь 𝑍 — число элементарных зарядов в ядре, а 𝑛 — номер энергетического уровня электрона, причём низший (основной) уровень соответствует 𝑛=1. Отсюда следует, что частота прецессии Томаса для электрона в атоме определяется выражением

ν𝑇

ν𝐵

1

2

𝑇

137𝑛

⎞²

 (частота прецессии Томаса).

(135)

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука