Читаем Физика пространства - времени полностью

б) Какую скорость разовьёт космический корабль за данный промежуток времени? Но мы сразу же подвергнем этот вопрос критике и перефразируем его. Дело в том, что скорость β — недостаточно простая для исследования величина. Простым является параметр скорости θ, и его простота состоит в аддитивности. Смысл же аддитивности в том, что, если параметр скорости космического корабля на рис. 76 относительно воображаемой мгновенно сопутствующей инерциальной системы отсчёта меняется от 0 до 𝑑θ за время 𝑑τ по часам астронавта, то параметр скорости этого корабля по отношению к лабораторной системе отсчёта за тот же промежуток времени по часам астронавта изменится от своего первоначального значения θ до значения θ+𝑑θ. Свяжем теперь величину 𝑑θ с ускорением 𝑔* в мгновенно сопутствующей инерциальной системе отсчёта. В этой системе


𝑔*

𝑑τ

=

𝑑β

th 𝑑θ

𝑑θ

,


так что


𝑑θ

=

𝑔*

𝑑τ

.


(64)


По прошествии каждого интервала времени 𝑑τ по часам астронавта происходит соответствующее увеличение параметра скорости космического корабля на 𝑑θ=𝑔*𝑑τ. Полная величина параметра скорости космического корабля в лабораторной системе отсчёта просто-напросто равна сумме всех этих последовательных увеличений параметра скорости. Пусть вначале космический корабль покоился. Тогда его параметр скорости линейно возрастал пропорционально величине истёкшего времени по часам астронавта согласно уравнению


θ

=

𝑔*τ

.


(65)


Так определяется параметр скорости θ космического корабля в лабораторной системе отсчёта в любой момент времени 𝑥 в системе отсчёта астронавта.

в) Какое расстояние в лабораторной системе отсчёта 𝑥 покрывает космический корабль за данный промежуток времени τ в системе отсчёта астронавта? В каждый момент скорость космического корабля в лабораторной системе отсчёта связана с его параметром скорости уравнением 𝑑𝑥/𝑑𝑡=th θ, так что расстояние 𝑑𝑥, пройденное за лабораторное время 𝑑𝑡 равно

𝑑𝑥=th θ 𝑑𝑡.

Вспомним, что соответствующие промежутки времени по часам астронавта 𝑑𝑥 представляются как более длинные промежутки 𝑑𝑡 в лабораторной системе отсчёта (замедление хода времени), и между ними существует связь

𝑑𝑡=ch θ 𝑑τ.

Отсюда расстояние в лабораторной системе отсчёта 𝑑𝑥, пройденное за время 𝑑τ по часам астронавта, равно


𝑑𝑥

=

th θ

ch θ

𝑑τ

=

sh θ

𝑑τ

.


Подставляя сюда выражение θ=𝑔*τ из пункта (б), найдём


𝑑𝑥

=

sh(𝑔*τ)

𝑑τ

.


Просуммируем (проинтегрируем) все эти малые перемещения 𝑑𝑥, начиная с момента «нуль» во времени астронавта и до конечного момента по этому времени; мы получим


𝑥

=

1

𝑔*

[ch(𝑔*τ)-1]

.


(66)


Так выражается расстояние 𝑥 в лабораторной системе отсчёта, покрытое космическим кораблём за любое данное время τ в системе отсчёта астронавта.

г) Переведём 𝑔* (в м/м²) в 𝑔=𝑔*𝑐² (в м/сек²) и τ (в м) в τсек=τ/𝑐 (в сек) в формуле (66). Выясним, был ли прав инженер, заключив в своём отчёте о возможности полёта, упомянутого в начале этого упражнения (1 год 31,6⋅10⁶ сек). ▼


52*. Наклонный стержень

Рис. 77а. Метровый стержень движется перпендикулярно самому себе (наблюдение в лабораторной системе отсчёта).

Рис. 77б. Движение метрового стержня, наблюдаемое в системе отсчёта ракеты.

Метровый стержень, параллельный оси 𝑥, движется в положительном направлении оси 𝑦 в лабораторной системе отсчёта со скоростью β𝑦. В системе отсчёта ракеты этот стержень несколько наклонён вверх в положительном направлении оси 𝑥'. Объясните, почему это так, причём сначала не пользуясь уравнениями. Пусть центр метрового стержня проходит через точку 𝑥=𝑦=𝑥'=𝑦'=0 в момент 𝑡=𝑡'=0, как это изображено на рис. 77а и 776. Вычислите затем величину угла θ', образованного метровым стержнем и осью 𝑥' в системе отсчёта ракеты. Обсуждение. Где и когда пересекает правый конец метрового стержня ось 𝑥 с точки зрения лабораторной системы отсчёта? Где и когда пересекает правый конец метрового стержня эту ось с точки зрения системы отсчёта ракеты? Экспериментально наблюдаемая томасовская прецессия электрона в атоме (см. упражнение 103) может быть объяснена тем же самым путём, что и явление наклона метрового стержня. ▼


53*. Парадокс метрового стержня 1)

1) См. R. Shaw, American Journal of Physics, 30, 72 (1962).

Замечание. До того как приступать к упражнению 53, следует разобраться в упражнении 52.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное