Читаем Физика пространства - времени полностью

Метровый стержень, параллельный оси 𝑥 лабораторной системы отсчёта, движется в ней по направлению к началу координат со скоростью β𝑟. Очень тонкая пластинка, параллельная плоскости 𝑥𝑦 в лабораторной системе отсчёта, движется в ней вверх в направлении оси 𝑦 со скоростью β𝑦. В пластинке имеется круглое отверстие диаметром 1 м, в центре которого проходит ось 𝑦. Центр метрового стержня оказывается в начале пространственных координат лабораторной системы отсчёта в тот момент, когда движущаяся вверх пластинка достигает плоскости 𝑦=0. Так как метровый стержень претерпел лоренцево сокращение в лабораторной системе отсчёта, то он без труда проходит сквозь отверстие в пластинке. Поэтому в ходе движения метрового стержня и пластинки между ними не произойдёт соударения. Однако кто-нибудь может выдвинуть возражение против этого вывода и аргументировать его следующим образом: в системе отсчёта ракеты, где метровый стержень покоится, он не подвергнут сокращению, но зато в этой системе лоренцево сокращение испытывает отверстие в пластине. Поэтому невозможно, чтобы сохраняющий свою полную длину метровый стержень прошёл через сжавшееся отверстие в пластинке. Таким образом, соударение между метровым стержнем и пластинкой неизбежно. Разрешите этот парадокс, используя ответ, полученный в предыдущем упражнении. Ответьте без всяких оговорок на вопрос: произойдёт соударение метрового стержня с пластинкой или нет?

Рис. 78. Сможет ли метровый стержень пройти без соударения сквозь отверстие диаметром 1 м?

54**. Тонкий человек на решётке 1)

1) W. Rindler, American Journal of Physics, 29, 365 (1961).

Некто имеет обыкновение ходить крайне быстро — настолько быстро, что релятивистское сокращение длин делает его очень тонким. Когда он идёт по улице, ему нужно пройти по канализационной решётке. Человек, стоящий рядом с решёткой, не сомневается, что быстро идущий тонкий человек провалится в отверстие решётки. Однако с точки зрения быстрого ходока он сам обладает обычными размерами, а релятивистское сокращение претерпевает решётка. Для него отверстия в решётке много уже, чем для спокойно стоящего человека, и, конечно, он не думает о возможности провалиться. Кто же здесь прав? Ответ связан с относительностью свойства жёсткости.

Идеализируем эту задачу: пусть метровый стержень скользит вдоль самого себя по гладкому столу. Пусть на пути этого стержня имеется отверстие шириной 1 м. Если лоренцево сокращение уменьшает длины в 10 раз, то в системе отсчёта стола (лаборатория) стержень имеет в длину 10 см и явно провалится в метровое отверстие. Предположим, что в лабораторной системе отсчёта метровый стержень движется настолько быстро, что в ходе падения в отверстие сохраняет горизонтальную ориентацию (наклона в лабораторной системе нет). Запишите в лабораторной системе отсчёта уравнение движения нижнего края метрового стержня, приняв, что 𝑡=𝑡'=0 в тот момент, когда задний конец метрового стержня пересекает край отверстия, вступая в него. При малых значениях вертикальной составляющей скорости стержень будет падать с обычным ускорением 𝑔. В системе отсчёта метрового стержня (ракеты) этот стержень имеет длину 1 м, тогда как отверстие подверглось лоренцеву сокращению в 10 раз. Теперь ширина отверстия 10 см, и стержень никак не может упасть в него. Произведите преобразование, переведя уравнения движения из лабораторной системы в систему отсчёта ракеты, и покажите, что стержень «перегнётся» в этой последней системе через край отверстия, иначе говоря, он не будет жёстким (твёрдым). Упадёт ли в конце концов стержень в отверстие в обеих системах отсчёта? Будет ли стержень на самом деле твёрдым или деформируемым в ходе этого опыта? Можно ли найти какие-либо физические характеристики этого стержня (например, степень его гибкости или сжимаемости), исходя из того описания его движения, которое даёт нам теория относительности? ▼

54а. Измерение скорости стандартного объекта одиночным наблюдателем — подробный пример 1)

1 Упражнение добавлено переводчиком - Прим. ред.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука