Читаем Физика в примерах и задачах полностью

Интересно отметить, что приближённый результат (6) для отклонения на малый угол с точностью до числового множителя порядка единицы можно получить совершенно элементарно. Рассмотрим относящийся к этому случаю рис. 21.3. Грубо можно считать, что взаимодействие метеорита с Землёй существенно только на ближайшем к Земле участке траектории AB длиной порядка l: другие участки почти прямолинейны, так как там сила земного притяжения практически параллельна скорости метеорита. В рассматриваемом движении модуль скорости практически не изменяется и продолжительность действия силы земного тяготения на метеорит можно принять равной tl/v. Силу приближённо можно положить равной mgR^2/l^2. Таким образом, приращение импульса метеорита p в направлении, перпендикулярном направлению его движения, составляет по порядку величины

p

=

F

t

mgR^2

lv

.

Отсюда для угла отклонения легко получить

p

p

=

p

mv

=

gR^2

lv^2

.

22. Рассеяние -частиц.

-частица, летевшая со скоростью v упруго рассеивается на неподвижном ядре и изменяет направление движения на 90°. Определить скорость ядра после удара.

Столкновение -частицы с ядром можно рассматривать как абсолютно упругий удар, при котором выполняются законы сохранения энергии и импульса. Пусть m и M - массы -частицы и ядра, а v и V - их скорости после столкновения. Тогда законы сохранения энергии и импульса записываются в виде

mv^2

2

=

mv^2

2

+

MV^2

2

,

(1)

mv

=

mv

+

MV

.

(2)

Рис. 22.1. Сохранение импульса при рассеянии -частицы на прямой угол неподвижным ядром

Равенству (2) соответствует параллелограмм импульсов на рис. 22.1. Так как по условию -частица рассеялась на 90°, то треугольники на этом рисунке прямоугольные. Направление движения ядра после удара составляет некоторый угол с первоначальным направлением движения -частицы. Из рис. 22.1 видно, что

tg

=

v

v

.

(3)

Для нахождения скорости -частицы и ядра после удара применим к прямоугольному треугольнику на рис. 22.1 теорему Пифагора:

M^2V^2

=

m^2

(v^2+v^2)

.

(4)

Подставляя отсюда V^2 в уравнение закона сохранения энергии (1), получаем

v^2

=

v^2

M-m

M+m

.

(5)

Подставляя это значение v^2 в равенство (4), находим

V^2

=

v^2

2m^2

M(M+m)

.

(6)

Выражение (3) для tg с учётом (5) принимает вид

tg

=

M-m

M+m

1/2

.

(7)

Из формулы (5) или (7) видно, что рассеяние -частицы на 90° при столкновении с неподвижным ядром возможно только в том случае, когда её масса меньше массы ядра: mM. Условие задачи не может быть выполнено, если -частицы рассеиваются на ядрах водорода, дейтерия, трития или гелия.

Рис. 22.2. Гиперболические траектории -частиц в кулоновском поле ядра

Несмотря на то что рассмотренный процесс мы называем ударом, в действительности -частица может и не приходить в непосредственное соприкосновение с ядром. На налетающую -частицу со стороны ядра действует кулоновская сила отталкивания, так что траектория -частицы представляет собой гиперболу (рис. 22.2). Ближе всего -частица подходит к ядру при центральном ударе, в результате которого она рассеивается назад. Для того чтобы оценить по порядку величины наименьшее расстояние r, на которое -частица может приблизиться к ядру, будем считать, что ядро остаётся неподвижным, и приравняем первоначальную кинетическую энергию -частицы к потенциальной энергии системы в момент остановки -частицы:

mv^2

2

=

1

4

2Ze^2

r

,

(8)

где Ze - заряд ядра. Если скорость налетающей -частицы такова, что вычисленное по формуле (8) значение r окажется больше размера ядра R10-13 см, то в процессе столкновения с ядром на -частицу действует только кулоновская сила, а короткодействующие ядерные силы не играют никакой роли.

Если в формуле (8) положить r равным радиусу действия ядерных сил R10-13 см, то можно оценить максимальную скорость (или энергию) -частицы, при которой она ещё упруго рассеивается на ядре, не изменяя его внутреннего состояния. Так, при Z порядка 80 (у золота, использовавшегося в опытах Резерфорда, Z=79) эта скорость составляет примерно 106 м/с. При этом благодаря тому, что силы кулоновского взаимодействия являются потенциальными, механическая энергия системы сохраняется. В результате модель абсолютного упругого удара адекватно описывает рассеяние, хотя удара в механическом смысле не происходит.

Кинетическую энергию, приобретаемую ядром при рассеянии -частицы на прямой угол, используя формулу (6), можно записать в виде

MV

2

=

mv^2

2

2m

M+m

.

(9)

Обратим внимание на то, что передаваемая ядру при столкновении энергия составляет ничтожную часть первоначальной энергии -частицы, если его масса много больше массы -частицы: M>>m. Этот вывод, полученный для частного случая рассеяния на прямой угол, остаётся справедливым и в общем случае рассеяния на любые углы.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука