Читаем Флатландия. Сферландия полностью

Нам казалось, что лучше всего привлечь к интересующей нас проблеме внимание членов физико-математического факультета нашего университета. Я вызвался разыскать математиков и физиков, которые бы выразили готовность ознакомиться с проблемой.

20. НА ФАКУЛЬТЕТЕ

Вопреки ожиданиям я без труда справился со своей задачей. Я думал, что факультет поручит кому-нибудь из специалистов выслушать наши «свидетельские показания» по поводу необычайных событий, но все вышло иначе. Доктора Пункто и меня пригласили на собрание всего факультета, с тем чтобы мы могли изложить там свои взгляды.

В назначенное время мы в отличном расположении духа отправились на высокоторжественный форум, но, войдя в зал, почувствовали себя, как подсудимые перед началом разбирательства. Мы не могли отделаться от ощущения, что пригласили нас лишь для того, чтобы, пользуясь удобным случаем, пресечь распространяемую нами ересь, осудив ее в официальном решении общего собрания факультета. Это ощущение не покидало нас на протяжении всего заседания.

Сначала председатель предоставил слово доктору Пункто, назвав его «бывшим землемером». Доктор Пункто не без сарказма исправил ошибку председателя, сказав, что в настоящее время он имеет честь носить звание «бывшего главного землемера, экс-директора Центральной Тригонометрической службы». Председательствующий реагировал на это замечание лишь краткой фразой «Вам слово», после чего доктор Пункто спокойно, строго придерживаясь фактов, рассказал обо всем, что произошло. Он сообщил собравшимся, что, согласно проведенным под его руководством измерениям, сумма углов треугольника оказалась больше 180°, причем отклонение от 180° тем больше, чем крупнее размеры треугольника. Никогда ранее, подчеркнул он, такое отклонение не наблюдалось, поскольку в прежние времена измерения производились на маленьких треугольниках и упомянутое выше отклонение превышало ошибки измерений. Доктор Пункто заявил, что отбрасывать серию произведенных под его руководством измерений на том лишь основании, что они приводят к парадоксальному выводу, не следует, ибо, по его мнению, необходимо попытаться найти научное объяснение столь странному явлению.

После того как доктор Пункто ясно и понятно изложил все имевшиеся в нашем распоряжении факты, слово попросил ученый-математик по имени Эрго. Путем весьма длинных и сложных рассуждений он доказал, причем вполне правильно, что наука, вообще говоря, призвана заниматься поиском объяснений экспериментально наблюдаемых фактов, а факты, о которых упоминал в своем выступлении доктор Пункто, такого рода, что науке следует незамедлительно отказаться от их рассмотрения. Сумма углов любого треугольника равна 180°, или двум прямым углам. Это доказали еще в глубокой древности, поэтому каждому ясно, что сумма углов треугольника не может принимать другое значение. А коль скоро некая серия измерений приводит к противоречию с одним из основных принципов науки, то эта серия измерений ошибочна. Ученые не обязаны заниматься поиском ошибок. Это должны сделать сами наблюдатели, допустившие вопиющую небрежность! Факультет не должен заниматься столь недостойным делом. Принять участие в подобной затее означало бы нанести ущерб престижу факультета.

Затем слово взял ученый-физик профессор Суппосо. Мы сразу же почувствовали, что выступает человек совсем другого склада. Профессор Суппосо все свое выступление построил на том, что в естественных науках, и в частности в физике, нередко приходится иметь дело со странными на первый взгляд результатами, которые при ближайшем рассмотрении оказываются верными. По его мнению, задача физики в том и состоит, чтобы отыскивать факты, кажущиеся невероятными, и затем пытаться найти им объяснение. Факты, приведенные доктором Пункто, весьма необычны, продолжал свои рассуждения профессор Суппосо, ибо они затрагивают основы основ математики, но тем не менее мы должны отнестись к ним с величайшей благосклонностью. Нам следует задать себе вопрос: можем ли мы представить себе треугольник, у которого сумма углов была бы больше 180°? Никогда еще нам не доводилось видеть такой треугольник ни в действительности, ни в воображении. Следовательно, чтобы обладать столь необычайными свойствами, сами треугольники должны быть весьма необычными. Может ли кто-нибудь из присутствующих опрокинуть существующие многократно проверенные научные представления и указать нам или начертить такой треугольник? Если никто не в состоянии сделать это, то я считаю вопрос исчерпанным. Однако если кому-нибудь все же удастся построить такой треугольник, то я с радостью приму участие в дальнейшем обсуждении.

Ободренный выступлением профессора Суппосо, я попросил слово и, когда мне его предоставили, произнес следующую речь:

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература