Тексты, или системы земной поверхности, устанавливаются в результате операций симметрии — движений клеток вверх, вниз, влево, вправо, т. е. путем перестановок, вращений, отражений от зеркальной поверхности и других преобразований. Если на первом этапе изучения рис. 1 мы провели анализ, т. е. мысленно разложили почвенный покров на составные части — клетки, то теперь при помощи операций симметрии (движений) производим синтез, «собрание» клеток в целое, мысленно воссоздаем единство почвенной системы.
Глядя на рис. 1, представим множество различных движений какой-либо одной клеткой. Такой перевод клетки «в себя» и служит характеристикой ее симметрии. Чем больше такое множество самосовмещений, тем симметричнее клетки и включающие их почвенные системы. Однако многие из них описываются небольшим числом движений: по окружности и вдоль радиуса — (рис. 1,
Множество движений, которое обнаруживается на рис. 1, можно назвать группой симметрии, так как они могут быть выполнены по определенным правилам (композициям). Существует разработанная на математической основе специальная теория симметрии, которую называют теорией групп преобразований, или просто теорией групп.
По рис. 1 рассмотрим геометрические закономерности структур почвенного покрова. Он будет построен _ геометрически правильно, или закономерно, если его можно разделить без остатка на равные части относительно некоторого геометрического признака. Шестиугольную мерзлотную почву (рис. 1,
Вот таким образом шаг за шагом можно научиться, следуя заветам Галилея, «различать знаки», которыми записана природа почв, и «понимать ее язык». Мы уже уяснили, что языком множества для почв является структура. Почвы как множества (или как системы) обладают своим, характерным только для них языком, своей структурой. Язык этот пока малопонятен, ибо ученые только приступили к его расшифровке на абстрактном уровне. Новый этап почвенных исследований будет связан с геометризацией почвенной науки, с молодым поколением ученых, владеющих методами физики и математики.
Желающим глубже изучить природу форм следует прочесть книгу о структуре почвенного покрова В. М. Фридланда (1972), а также книги: И. И. Шафрановского «Симметрия в природе» (1968; 1985), A. В. Шубникова, В. А. Копцика «Симметрия в науке и искусстве» (1972), Ю. А. Урманцева «Симметрия природы и природа симметрии» (1974), Л. В. Тарасова «Этот удивительно симметричный мир» (1982), B. Бунге «Теоретическая география» (1967).
ПОИСК АКСИОМ, С ПОМОЩЬЮ КОТОРЫХ МОЖНО
ОПИСАТЬ ЗЕМНУЮ ПОВЕРХНОСТЬ
АКСИОМАТИЧЕСКИЙ МЕТОД В НАУКАХ О ЗЕМЛЕ