Чтобы почвоведению построить собственную аксиоматику, необходимо обратиться за опытом к смежным наукам. В геометрии положение, принятое без логического доказательства в силу очевидности, называется аксиомой, или постулатом. Аксиома — истинное исходное положение теории. Аксиоматика — набор аксиом, из которых строятся логические представления геометрии. Аксиоматика может оказать услугу геометрическому почвоведению, которое в свои постулаты включает те же элементы, что и геометрия (точку, линию, плоскость), и некоторые ее аксиомы: 1) сочетания, 2) порядка, 3) движения, 4) непрерывности и 5) параллельности.
Геометрическое почвоведение тесно связано с системным подходом. Поэтому оно заимствует некоторые аксиоматические положения общей теории систем Ю. А. Урманцева (1974 и др.):
На языке почвоведения вышеперечисленные положения Ю. А. Урманцева
Как видим, аксиомы строятся для конструирования абстрактных образов. Их составление для реальных /природных тел не имеет смысла. Так, И. А. Соколов, В. О. Таргульян (1977) в качестве аксиом почвоведения предложили три положения:
Определение
Почему же почвоведы не опираются на абстрактные понятия при выводе аксиом? Может быть, потому, что почва — сложное тело, трудно поддающееся идеализации? Да, это так. Поэтому много веков почву не могли представить в абстрактном виде. Впервые это удалось сделать В. В. Докучаеву, и в этом его величайшая заслуга.
До Докучаева и некоторое время после него почва воспринималась как однородная, изотропная смесь, как порошок, а науку, изучавшую эту смесь, шутливо называли «порошковым почвоведением». Раньше почву определяли как равное во всех отношениях (геометрическом, химическом, физическом) пространство. Сейчас такое почвенное пространство мы назвали бы нульмерным. Аксиома нульмерного пространства гласит: «Почву можно представить точкой». Точка — это участок почвы, взятый вне связи с ее свойствами и в отрыве от среды.
Докучаев изменил прежнее представление о почвенном пространстве: вместо нульмерного оно стало одномерным, не точкой, а линией, охватывающей идеей целостности разнообразие горизонтов А, В и С. Аксиомы такого одномерного почвоведения выглядят уже так: 1) почва — одномерное пространство, отражающее реальное свойство анизотропного почвенного профиля, состоящего из элементов-горизонтов А, В и С; 2) элементарный вещественный состав горизонтов почвенного профиля находится в соотношении, определяющемся постоянными величинами. Эти аксиомы в неявной форме высказаны Докучаевым. Первая из них понятна, а со второй почвоведы часто сталкиваются, определяя, например, отношения химических элементов (C: N), окислов (SiO2
:Al2O3), фракций гумусовых веществ, мощностей почвенных горизонтов.При переходе почвоведения к двумерным, трехмерным, n-мерным образам понадобятся новые абстракции и аксиомы, разъясняющие положение в пространстве, во времени и в движении. Они будут вытекать из запросов сельскохозяйственного производства и степени совершенства технической оснащенности науки.