Точки, близкие к началу координат, исключаются из результата построения, остальные же сортируются по оболочкам, задаваемым неравенством
Целью построения является обработка имеющихся в наличии данных с тем, чтобы извлечь из них максимальное количество независимой информации. При малых значениях
Когда
На заключительном этапе обработки, целью которого является уничтожение следов исходной кубической решетки, все точки смещаются вдоль векторов, координаты которых равномерно распределены на интервале [0,1]. К сожалению, в результате этой процедуры образуются сплошные серые участки различной степени насыщенности, которые искажают получаемую фрактальную пыль: мы видим не что иное, как сглаженные версии областей с высокой степенью неравномерности.
На представляемой вниманию читателя иллюстрации
На рис. 7 в статье [397] представлена еще одна фрактальная пыль (из тех же, кстати, предварительных результатов с неполными ярлыками), при построении которой использовался другой набор из
XI РАЗНОЕ
36 ФРАКТАЛЬНАЯ ЛОГИКА В СТАТИСТИЧЕСКОЙ РЕШЕТОЧНОЙ ФИЗИКЕ
С фрактальной точки зрения, большинство задач физики не имеет сколько-нибудь принципиальных отличий от тех задач, что ставят перед собой другие научные дисциплины. Именно поэтому в настоящем эссе повсюду встречаются всевозможные «прецеденты» из физики, и лишь немногие мы приберегли для отдельного рассмотрения в этой главе.
Возможно, однако, что кто-то начнет читать книгу именно с этой главы, так как только в ее названии имеется слово «физика». Такому читателю я порекомендовал бы заглянуть в указатель, но сначала обратил бы его внимание на перечисленные ниже пространные рассмотрения физических прецедентов, никак не фигурирующие в названиях соответствующих глав.
В главах 13 и 14 обсуждается феномен перколяции.
Аполлониево «мыло» в главе 18 есть не что иное, как смектическая фаза жидкого кристалла.
Понятие текстуры (главы 34 и 35) наверняка в самом ближайшем будущем найдет многочисленные новые области применения в физике.
Наконец, позвольте мне привести некоторые небезынтересные, на мой взгляд, факты. Термин «дифракталы» впервые появился в одноименной работе Берри [24] – так были названы волны, либо отраженные от фрактальной поверхности, либо преломленные пластиной, состоящей из прозрачного материала с фрактально турбулентным показателем преломления. Дифракталы представляет собой новый волновой режим, с помощью которого можно исследовать все более тонкие структурные уровни, и к которому неприменима геометрическая оптика. Некоторые из свойств дифракталов Берри вычислил в явном виде.
В другой своей работе [23] Берри рассчитал распределение мод фрактальных барабанов – резонаторов с фрактальными границами.
О ДВУХ ВИДАХ СХОДИМОСТИ
Перейдем непосредственно к цели настоящей главы. До сих пор при рассмотрении различных прецедентов от физики мы пренебрегали одним очень важным обстоятельством (либо заметали его при удобном случае под ковер): во многих областях физики один из основных этапов построения математического фрактала принципиально неосуществим.