Читаем Фрактальная геометрия природы полностью

Точки, близкие к началу координат, исключаются из результата построения, остальные же сортируются по оболочкам, задаваемым неравенством R122+y2+z222, в соответствии с уменьшающимся уровнем яркости. Каждая оболочка проецируется на сферический небосвод.

Целью построения является обработка имеющихся в наличии данных с тем, чтобы извлечь из них максимальное количество независимой информации. При малых значениях R2 можно составить карту всего небосвода целиком, однако при бóльших R2 не следует обрабатывать больше некоторой разумной доли одного периода исходной периодической структуры. Максимальное значение R2 в самой внешней оболочке соответствует карте, ограниченной одним-единственным октантом небесной сферы – например, областью, где x>0, y>0 и z>0 . Определяя этот октант в сферических координатах, можно сказать, что он соответствует положительным значениям широты (северное полушарие), долгота же при этом варьируется от −45° до 45°. В использованной здесь хаммеровской проекции этот октант отображается на участок, напоминающий готическое стрельчатое окно; см. нижеследующий рисунок.

Когда R2 достигает 600, данные в окрестностях трех вершин становятся статистически зависимыми, причем окрестности нижних вершин, лучше всего, совсем исключить из рассмотрения. Таким образом, данные за пределами R2=600, а также данные в окрестностях точек x=z=0, y=600 и y=z=0, x=600, приходится принести в жертву необходимости избежания статистической зависимости, порождаемой периодичностью. С другой стороны, для построения небосвода для антиподов (x<0, y<0 и z<0, т.е. южные широты и долготы θ, удовлетворяющие неравенству |θ−180°|<45°) не требуется заново проводить вычисления, а результат может оказаться достаточно отличным от предыдущего, и его вполне можно будет рассматривать как источник дополнительной информации.

На заключительном этапе обработки, целью которого является уничтожение следов исходной кубической решетки, все точки смещаются вдоль векторов, координаты которых равномерно распределены на интервале [0,1]. К сожалению, в результате этой процедуры образуются сплошные серые участки различной степени насыщенности, которые искажают получаемую фрактальную пыль: мы видим не что иное, как сглаженные версии областей с высокой степенью неравномерности.

На представляемой вниманию читателя иллюстрации R2=600, а R1=R2/1,5, т.е. модули векторов лежат в узком диапазоне, ширина которого равна 2,5lg(1,5)2~0.88.

На рис. 7 в статье [397] представлена еще одна фрактальная пыль (из тех же, кстати, предварительных результатов с неполными ярлыками), при построении которой использовался другой набор из f трем.

XI РАЗНОЕ

36 ФРАКТАЛЬНАЯ ЛОГИКА В СТАТИСТИЧЕСКОЙ РЕШЕТОЧНОЙ ФИЗИКЕ

С фрактальной точки зрения, большинство задач физики не имеет сколько-нибудь принципиальных отличий от тех задач, что ставят перед собой другие научные дисциплины. Именно поэтому в настоящем эссе повсюду встречаются всевозможные «прецеденты» из физики, и лишь немногие мы приберегли для отдельного рассмотрения в этой главе.


Возможно, однако, что кто-то начнет читать книгу именно с этой главы, так как только в ее названии имеется слово «физика». Такому читателю я порекомендовал бы заглянуть в указатель, но сначала обратил бы его внимание на перечисленные ниже пространные рассмотрения физических прецедентов, никак не фигурирующие в названиях соответствующих глав.

В главах 13 и 14 обсуждается феномен перколяции.

Аполлониево «мыло» в главе 18 есть не что иное, как смектическая фаза жидкого кристалла.

Понятие текстуры (главы 34 и 35) наверняка в самом ближайшем будущем найдет многочисленные новые области применения в физике.

Наконец, позвольте мне привести некоторые небезынтересные, на мой взгляд, факты. Термин «дифракталы» впервые появился в одноименной работе Берри [24] – так были названы волны, либо отраженные от фрактальной поверхности, либо преломленные пластиной, состоящей из прозрачного материала с фрактально турбулентным показателем преломления. Дифракталы представляет собой новый волновой режим, с помощью которого можно исследовать все более тонкие структурные уровни, и к которому неприменима геометрическая оптика. Некоторые из свойств дифракталов Берри вычислил в явном виде.

В другой своей работе [23] Берри рассчитал распределение мод фрактальных барабанов – резонаторов с фрактальными границами.

О ДВУХ ВИДАХ СХОДИМОСТИ

Перейдем непосредственно к цели настоящей главы. До сих пор при рассмотрении различных прецедентов от физики мы пренебрегали одним очень важным обстоятельством (либо заметали его при удобном случае под ковер): во многих областях физики один из основных этапов построения математического фрактала принципиально неосуществим.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература