Читаем Фрактальная геометрия природы полностью

Можно сделать еще одно – связанное с предыдущим, но отличное от него – предположение, которое заключается в том, что реальные задачи, для которых решеточная физика предоставляет удобное упрощение, связаны с теми же (или почти с теми же) фракталами. Это предположение получило поддержку в работе [535] в отношении полимеров (которыми мы также вскоре займемся).

ЛОКАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ / ГЛОБАЛЬНЫЙ ПОРЯДОК

Решеточной физике мы обязаны одним интереснейшим открытием, которое заслуживает того, чтобы о нем узнал весь мир. Заключается оно в том, что при определенных условиях чисто локальные взаимодействия имеют глобальные последствия. Приведу простой пример: результатом взаимодействий между соседними элементарными спинами является магнит, в удивительных свойствах которого всякий может убедиться сам.

Здесь, полагаю, мы вправе помечтать о том, что когда-нибудь феномены, для представления которых я использовал дробные броуновские фракталы, получат аналогичное объяснение.

ВЫМЫШЛЕННЫЙ ПРИМЕР

Позвольте мне описать некий пример, который фундаментальнейшим образом не согласуется с физическим механизмом упорядочения, однако обладает некоторыми несомненными достоинствами: он прост, и, кроме того, в нем (в качестве примера доказуемого слабого предела) фигурирует наша старая фрактальная приятельница, салфетка Серпинского (см. главу 14). В точках с целочисленными координатами разместим спины таким образом, чтобы в четные (нечетные) моменты времени они занимали четные (нечетные) места. Знак каждого спина определяется в соответствии со следующим правилом: спин S(t,n) в момент времени t и в позиции n отрицателен, если спины S(t−1,n−1) и S(t+1,n+1) одинаковы, и положителен в противном случае.

Прямая, состоящая из равномерно расположенных отрицательных спинов, остается после проведения описанной процедуры инвариантной. Проследим эффекты, возникающие при включении в нее положительной «примеси» в точке с координатой n=0 в момент времени t=0. Все спины S(1,n) отрицательны, кроме спинов, расположенных в точках n=−1 и n=+1. Последующие конфигурации выглядят таким вот образом:

Многие читатели, несомненно, узнают в этом построении треугольник Паскаля, в котором места расположения нечетных биномиальных коэффициентов отмечены знаками +. В полном треугольнике Паскаля t - я строка дает значения коэффициентов в разложении бинома (a+b)t.

Всякий, кто прочел главу 14, сразу увидит, что если соединить каждый плюс с соседними плюсами, то получится граф, родство которого с салфеткой Серпинского просто бросается в глаза (см. [499]). Более того, при уменьшении шага решетки этот граф сходится именно к салфетке Серпинского.

СЛУЧАЙНОЕ БЛУЖДАНИЕ БЕЗ САМОПЕРЕСЕЧЕНИЙ И ГЕОМЕТРИЯ ЛИНЕЙНЫХ ПОЛИМЕРОВ

Обратимся теперь к одной очень важной конкретной задаче. При случайном блуждании без самопересечений (СББС) точка движется вперед, не обращая никакого внимания на свои предыдущие положения; исключением является лишь запрет проходить через одно место более одного раза и забредать туда, откуда невозможно найти выход. Все допустимые направления равновероятны.

На прямой такое движение не представляет никаких проблем: оно неизбежно распространяется в обоих направлениях и никогда не пересекает само себя.

Что касается плоского и пространственного случаев, то здесь возникает интересная и весьма сложная проблема – настолько сложная, что до сих пор ни одна аналитическая попытка найти ее решение не увенчалась успехом. Однако практическая значимость этой проблемы при изучении макромолекул (полимеров) настолько велика, что она стала объектом тщательных эвристических исследований и детального компьютерного моделирования. Ниже приводится наиболее интересный для нас результат, полученный Ч. Домбом и описанный в [15].

После n≫1 этапов построения среднеквадратическое смещение Rn имеет порядок, равный величине n, возведенной в степень, которую мы обозначим через 1/D.

Исходя из этого утверждения, можно с большой долей уверенности заключить, что внутри окружности или сферы радиуса R с центром в некоторой точке случайного блуждания содержится приблизительно RD других точек этого случайного блуждания. Хороший повод удостовериться, является ли величина D фрактальной размерностью.

В случае прямой D (тривиально) равно единице. Согласно теоретическим рассуждениям Флори и результатам компьютерного моделирования для E=2 и E=3, D=(E+2)/3 (подробнее об этом можно прочесть в замечательном обзоре [99] (раздел 1.3), правда, вместо D там используется обозначение 1/v). Фрактальная размерность DB=2 броуновского движения превышает это значение в случаях E=2 и E=3, однако совпадает с ним при E=4.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература