Можно сделать еще одно – связанное с предыдущим, но отличное от него – предположение, которое заключается в том, что реальные задачи, для которых решеточная физика предоставляет удобное упрощение, связаны с теми же (или почти с теми же) фракталами. Это предположение получило поддержку в работе [535] в отношении полимеров (которыми мы также вскоре займемся).
ЛОКАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ / ГЛОБАЛЬНЫЙ ПОРЯДОК
Решеточной физике мы обязаны одним интереснейшим открытием, которое заслуживает того, чтобы о нем узнал весь мир. Заключается оно в том, что при определенных условиях чисто локальные взаимодействия имеют глобальные последствия. Приведу простой пример: результатом взаимодействий между соседними элементарными спинами является магнит, в удивительных свойствах которого всякий может убедиться сам.
Здесь, полагаю, мы вправе помечтать о том, что когда-нибудь феномены, для представления которых я использовал дробные броуновские фракталы, получат аналогичное объяснение.
ВЫМЫШЛЕННЫЙ ПРИМЕР
Позвольте мне описать некий пример, который фундаментальнейшим образом не согласуется с физическим механизмом упорядочения, однако обладает некоторыми несомненными достоинствами: он прост, и, кроме того, в нем (в качестве примера доказуемого слабого предела) фигурирует наша старая фрактальная приятельница, салфетка Серпинского (см. главу 14). В точках с целочисленными координатами разместим спины таким образом, чтобы в четные (нечетные) моменты времени они занимали четные (нечетные) места. Знак каждого спина определяется в соответствии со следующим правилом: спин
Прямая, состоящая из равномерно расположенных отрицательных спинов, остается после проведения описанной процедуры инвариантной. Проследим эффекты, возникающие при включении в нее положительной «примеси» в точке с координатой
Многие читатели, несомненно, узнают в этом построении треугольник Паскаля, в котором места расположения нечетных биномиальных коэффициентов отмечены знаками
Всякий, кто прочел главу 14, сразу увидит, что если соединить каждый плюс с соседними плюсами, то получится граф, родство которого с салфеткой Серпинского просто бросается в глаза (см. [499]). Более того, при уменьшении шага решетки этот граф сходится именно к салфетке Серпинского.
СЛУЧАЙНОЕ БЛУЖДАНИЕ БЕЗ САМОПЕРЕСЕЧЕНИЙ И ГЕОМЕТРИЯ ЛИНЕЙНЫХ ПОЛИМЕРОВ
Обратимся теперь к одной очень важной конкретной задаче. При случайном блуждании без самопересечений (СББС) точка движется вперед, не обращая никакого внимания на свои предыдущие положения; исключением является лишь запрет проходить через одно место более одного раза и забредать туда, откуда невозможно найти выход. Все допустимые направления равновероятны.
На прямой такое движение не представляет никаких проблем: оно неизбежно распространяется в обоих направлениях и никогда не пересекает само себя.
Что касается плоского и пространственного случаев, то здесь возникает интересная и весьма сложная проблема – настолько сложная, что до сих пор ни одна аналитическая попытка найти ее решение не увенчалась успехом. Однако практическая значимость этой проблемы при изучении макромолекул (полимеров) настолько велика, что она стала объектом тщательных эвристических исследований и детального компьютерного моделирования. Ниже приводится наиболее интересный для нас результат, полученный Ч. Домбом и описанный в [15].
После
Исходя из этого утверждения, можно с большой долей уверенности заключить, что внутри окружности или сферы радиуса
В случае прямой