Чтобы рассмотреть это сродство более подробно, я предлагаю читателю поразмыслить над некоторыми цитатами из Уилсона ([603], c. 774): а)
«Ключевой особенностью статистического континуального предела является отсутствие характеристических масштабов длины, энергии или времени»; б) «[Метод РГ - это] инструмент, который мы используем для изучения статистического континуального предела … [Дополнительная гипотеза об универсальности] также имеет аналог в случае обыкновенной производной. Как правило, существует много конечно – разностных аппроксимаций для производной»; в) «Мы все еще очень далеки от понимания простой и в то же время явно структурированной природы производной»; г) «Расходящийся интеграл есть типичный … симптом задачи, не имеющей характеристического масштаба»; д) «[Ранняя] теория ренорм – групп … не рассматривает расходимостей в квантовой электродинамике …. Хуже всего [в ней] то, что … это чисто математический метод для вычитания расходящихся частей интегралов»; е) «Главной физической основой ренорм – группового подхода … является существование каскадного эффекта …. [Первой] основной особенностью каскадной картины является ее масштабная инвариантность»; ж) «[Вторая основная особенность - это] усиление либо ослабление».Теперь кое-какие комментарии. В цитате (а) утверждается, что и РГ, и фракталы предназначены для решения практических задач одного класса, а в цитате (г) – что в процессе решения они сталкиваются, прежде всего, с одной и той же проблемой. Цитата (б) становится гораздо более точной, если применить ее к теории фракталов. Высказанное в цитате (в) сожаление во фрактальном контексте лишено оснований: в настоящее время в нашем распоряжении имеется простая и в то же время структурированная замена производной, первым элементом которой является фрактальная размерность. Цитата (г), несомненно, принесла читателю нашего эссе радость узнавания: главу 5 мы начали с доказательства расходимости интеграла, который, в теории, должен был бы дать нам длину береговой линии. В других ситуациях мы смиряемся и с бесконечной дисперсией, и с бесконечным математическим ожиданием, и с бесконечной вероятностью (например, когда имеем дело с распределением Pr(U>u)=u−D
при 0, хотя и знаем, что 0−D=∞). Цитата (д) наполняет нас ощущением покоя и безопасности: уж мы-то всегда сможем избежать расходимостей, не прибегая для этого к чисто математическим методам. Цитата (е) также выглядит вполне знакомой.В итоге не остается никаких сомнений в том, что и РГ, и фракталы ведут свое происхождение из одного источника и составляют, как выясняется, две стороны одной монеты, аналитическую и геометрическую. Однако фрактального аналога для цитаты (ж) мы так и не нашли, следовательно, параллелизм нельзя считать полным.
Теория РГ дает нам такую замечательную вещь, как гамильтониан неподвижной точки, H
0. Быть физиком – значит полагать, что из гамильтониана H физической системы, в принципе, выводится все, что вообще возможно узнать о структуре этой системы. Если это так, то должна существовать возможность использовать гамильтонианы и для получения совместных распределений вероятностей различных случайных фигур. Из конечно – перенормированного гамильтониана H наверняка можно вывести распределения фигур, построенных на частой решетке, а из гамильтониана неподвижной точки H0 - распределения предельных фигур (и, в особенности, их размерности D). Здесь вырисовывается целая исследовательская программа, которую, возможно, будет сложно реализовать, но которая, я уверен, приведет к желаемым результатам.МНОГОУГОЛЬНИКИ БЕЗ САМОПЕРЕСЕЧЕНИЙ
Выберем случайным образом какой-нибудь многоугольник из всех не пересекающих себя n
- угольников, стороны которых состоят из ребер плоской (E=2) квадратной решетки. Он может оказаться близок по форме к квадрату, и тогда его площадь будет приблизительно равна (n/4)2. Возможно также, что он будет узким и вытянутым, и его площадь составит приблизительно n/2. При усреднении (посредством назначения каждому многоугольнику одинакового веса) результаты численного моделирования дают для площади среднее значение, приблизительно равное n2/D, где D~4,3 (см. [215]). Следовательно, с точки зрения теории фракталов, многоугольник ведет себя как случайное блуждание без самопересечений, кусающее себя за хвост.И СНОВА МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ
То, что многоугольники без самопересечений имеют размерность D~4,3
, похоже, дает им право выступать в качестве моделей береговых линий, иррегулярность которых превышает средний уровень. Мы, конечно же, можем возрадоваться этому открытию, однако оно никоим образом не разрешает вопроса о форме береговых линий, поставленного в главе 5.