Читаем Фрактальная геометрия природы полностью

Чтобы рассмотреть это сродство более подробно, я предлагаю читателю поразмыслить над некоторыми цитатами из Уилсона ([603], c. 774): а) «Ключевой особенностью статистического континуального предела является отсутствие характеристических масштабов длины, энергии или времени»; б) «[Метод РГ - это] инструмент, который мы используем для изучения статистического континуального предела … [Дополнительная гипотеза об универсальности] также имеет аналог в случае обыкновенной производной. Как правило, существует много конечно – разностных аппроксимаций для производной»; в) «Мы все еще очень далеки от понимания простой и в то же время явно структурированной природы производной»; г) «Расходящийся интеграл есть типичный … симптом задачи, не имеющей характеристического масштаба»; д) «[Ранняя] теория ренорм – групп … не рассматривает расходимостей в квантовой электродинамике …. Хуже всего [в ней] то, что … это чисто математический метод для вычитания расходящихся частей интегралов»; е) «Главной физической основой ренорм – группового подхода … является существование каскадного эффекта …. [Первой] основной особенностью каскадной картины является ее масштабная инвариантность»; ж) «[Вторая основная особенность - это] усиление либо ослабление».

Теперь кое-какие комментарии. В цитате (а) утверждается, что и РГ, и фракталы предназначены для решения практических задач одного класса, а в цитате (г) – что в процессе решения они сталкиваются, прежде всего, с одной и той же проблемой. Цитата (б) становится гораздо более точной, если применить ее к теории фракталов. Высказанное в цитате (в) сожаление во фрактальном контексте лишено оснований: в настоящее время в нашем распоряжении имеется простая и в то же время структурированная замена производной, первым элементом которой является фрактальная размерность. Цитата (г), несомненно, принесла читателю нашего эссе радость узнавания: главу 5 мы начали с доказательства расходимости интеграла, который, в теории, должен был бы дать нам длину береговой линии. В других ситуациях мы смиряемся и с бесконечной дисперсией, и с бесконечным математическим ожиданием, и с бесконечной вероятностью (например, когда имеем дело с распределением Pr(U>u)=u−D при 0, хотя и знаем, что 0−D=∞). Цитата (д) наполняет нас ощущением покоя и безопасности: уж мы-то всегда сможем избежать расходимостей, не прибегая для этого к чисто математическим методам. Цитата (е) также выглядит вполне знакомой.

В итоге не остается никаких сомнений в том, что и РГ, и фракталы ведут свое происхождение из одного источника и составляют, как выясняется, две стороны одной монеты, аналитическую и геометрическую. Однако фрактального аналога для цитаты (ж) мы так и не нашли, следовательно, параллелизм нельзя считать полным.

Теория РГ дает нам такую замечательную вещь, как гамильтониан неподвижной точки, H0. Быть физиком – значит полагать, что из гамильтониана H физической системы, в принципе, выводится все, что вообще возможно узнать о структуре этой системы. Если это так, то должна существовать возможность использовать гамильтонианы и для получения совместных распределений вероятностей различных случайных фигур. Из конечно – перенормированного гамильтониана H наверняка можно вывести распределения фигур, построенных на частой решетке, а из гамильтониана неподвижной точки H0 - распределения предельных фигур (и, в особенности, их размерности D). Здесь вырисовывается целая исследовательская программа, которую, возможно, будет сложно реализовать, но которая, я уверен, приведет к желаемым результатам.

МНОГОУГОЛЬНИКИ БЕЗ САМОПЕРЕСЕЧЕНИЙ

Выберем случайным образом какой-нибудь многоугольник из всех не пересекающих себя n- угольников, стороны которых состоят из ребер плоской (E=2) квадратной решетки. Он может оказаться близок по форме к квадрату, и тогда его площадь будет приблизительно равна (n/4)2. Возможно также, что он будет узким и вытянутым, и его площадь составит приблизительно n/2. При усреднении (посредством назначения каждому многоугольнику одинакового веса) результаты численного моделирования дают для площади среднее значение, приблизительно равное n2/D, где D~4,3 (см. [215]). Следовательно, с точки зрения теории фракталов, многоугольник ведет себя как случайное блуждание без самопересечений, кусающее себя за хвост.

И СНОВА МОДЕЛИ БЕРЕГОВЫХ ЛИНИЙ

То, что многоугольники без самопересечений имеют размерность D~4,3, похоже, дает им право выступать в качестве моделей береговых линий, иррегулярность которых превышает средний уровень. Мы, конечно же, можем возрадоваться этому открытию, однако оно никоим образом не разрешает вопроса о форме береговых линий, поставленного в главе 5.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература