Читаем Фрактальная геометрия природы полностью

Согласно предельному доказательству Кестена, D→2 только при условии, что E→2 . Однако предположение о том, что D=2 при любом E≥4, подкрепляется изящной физической аргументацией, а также одним простым фрактальным доводом, который звучит следующим образом: при E≥4 коразмерность броуновского движения равна двум, следовательно, коразмерность множества его двойных точек равна нулю, - а это означает, что броуновское движение не имеет двойных точек. Таким образом, без особых хлопот мы приходим к искомому выводу: Броуновское движение нигде не пересекает само себя.

Значения D, как оказалось, весьма чувствительны к исходным допущениям. Виндвер обнаружил, что если полимер в 3 – пространстве состоит из двух различных типов атомов (т.е., блуждание не ограничено решеткой), то D=2/1,29 , а это, по его мнению, существенно меньше значения, полученного Домбом (D=1,67~2/1,2). В случае полимера, растворенного в каком-либо реакционно-способном растворителе, пространство вложения оказывается еще менее инертным; величина D, в частности, становится в этом случае зависимой от протекающей реакции. Точка θ определяется как точка, в которой D принимает свое броуновское движение DB=2. В хороших растворителях D<2, причем чем выше качество растворителя, тем меньше D; совершенный растворитель, в частности, дает D=2/1,57 при E=2 и D=2/1,37при E=3. Даже с самым плохим растворителем величина D в 2 – пространстве никогда не достигает значения D=2, однако в 3 – пространстве плохой растворитель с легкостью обеспечивает D>2. В действие вступают коагуляция и фазовое разнесение, и неразветвленная цепь больше не может считаться удовлетворительной моделью.

Предыдущие абзацы были написаны исключительно с целью выражения известных результатов в рамках фрактальной терминологии – мне думается, такое выражение поможет читателю яснее представить себе их значение. Тем не менее, следует еще раз подчеркнуть: называя величину D размерностью, мы тем самым допускаем, что многократно учащенные СББС слабо сходятся к некоему семейству фракталов, размерность которых совпадает с эмпирически наблюдаемым значением D . Физики на этот счет не испытывают никаких сомнений, однако привередливые математики настаивают на том, что на данный момент такое утверждение является не более чем предположением. В следующем разделе мы вкратце обрисуем направление, в котором может пойти доказательство упомянутого предположения.

Заметьте, мы вовсе не ожидаем, что фрактальный предел при учащении решетки окажется лишен пересечений, так как точки, в которых СББС «погружается» в свое отдаленное прошлое, становятся двойными точками. В самом деле, размерность множества двойных точек в этом случае положительна, (4−E)3>0. Мы, однако, можем ожидать, что тройных точек не будет, поскольку размерность их множества равна max(0,2−E)=0.

Последовательности, сильно сходящиеся к фракталам, несравненно легко поддаются изучению (как аналитически, так и с точки зрения вычислений), нежели СББС на четырех решетках. Следовательно, удобно было бы – если можно так выразиться – «оттенить» СББС некоторой последовательностью, благословенной обыкновенно (т.е. сильно) сходящимися приближениями. Этой цели можно достичь, используя предложенные мною «сквиг – кривые» (см. главу 24). Поразительно, но размерность наименее изощренных и наиболее изотропных сквиг - кривых оказывается чрезвычайно близка к значению D=4/3, характерному для плоских СББС. Еще одна «тень» - броуновское движение без самопересечений, определяемое на рис. 341 как граница оболочки ограниченного броуновского следа. Вспомним, что размерность этой границы также составляет D=4/3. Едва ли это просто совпадение – скорее, намек на возможность углубить наши знания о структуре плоскости.

В этом месте было бы интересно отступить немного в сторону и посмотреть, соответствует ли случайное блуждание без самопересечений космологическому принципу (см. главу 22). На первых этапах построения не наблюдается этого соответствия. Скорее всего, преобладающим окажется установившееся условно космографическое состояние (однако мне не известно, пытался ли кто-нибудь доказать это).

РЕНОРМ – ГРУППОВОЙ ПОДХОД

Аналитическое изучение масштабной инвариантности в решеточных физических системах (опирающееся на традиции, отличные от тех, каким следую я) полагается зачастую на один весьма могущественный инструмент, который называется (ошибочно, кстати) «методом ренорм – групп (РГ)». В качестве дополнительного источника рекомендую весьма доступный обзор от самого автора метода, К. Уилсона, [604]. Когда один из предыдущих вариантов настоящего Эссе находился еще в стадии предпечатной подготовки – причем в то же время готовилась к печати одна из ранних статей по РГ, - у меня состоялся разговор с Х. Г. Каленом, который привлек мое внимание к очевидному концептуальному сродству между ними.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература