Читаем Фрактальная геометрия природы полностью

Прежде всего, остается проблема островов. Концепция размерности должна одновременно учитывать и иррегулярность береговых линий, и их фрагментацию, и связь между иррегулярностью и фрагментацией. А у не пересекающих себя многоугольников прибрежных островов, к сожалению, не наблюдается.

Кроме того, я полагаю, что одного – единственного значения D для всех береговых линий Земли явно недостаточно.

И, наконец – последнее по порядку, но не по значимости, - если шаг решетки, на которой мы строим очень обширное случайное блуждание (или большой многоугольник) без самопересечений, уменьшается с единицы до какого-либо малого значения η, то две точки, разделенные ранее промежутком единичной длины, сходятся в пределе к одной и той же точке. Таким образом, в предельном случайном блуждании (многоугольнике) на частой решетке появляются точки пусть не самопересечения, но самокасания. Мне совсем не нравится наличие таких точек в модели береговой линии. Помимо всего прочего, эта модель подразумевает возможность буквальной интерпретации латинского слова peninsula («полуостров» или, буквально, «почти – остров») как острова, который касается материка в одной – единственной точке, а также существования почти – озер.

ПОЧЕМУ РЕКИ НЕ МОГУТ ТЕЧЬ ПРЯМО?

В главе 12 мы упоминали об эмпирическом открытии Хака, которое заключается в том, что длина типичной реки возрастает пропорционально площади ее бассейна, возведенной в степень D/2. Если бы реки текли прямолинейно по своим круглым бассейнам, то длина потока была бы пропорциональна квадратному корню из площади бассейна, а D равнялось бы единице. В действительности же значение D варьируется от 1,2 до 1,3. В качестве примера в главе 12 приводится описание модели, в основе которой лежит заполняющая плоскость сеть рек, причем реки эти представляет собой фрактальные кривые.

Леопольд и Лангбейн предприняли попытку объяснения эффекта Хака, но избрали для этого совершенно иной, стохастический, путь: в своей работе [298] они сообщают о полученных ими результатах компьютерного моделирования развития конфигураций гидрографической сети в литологически однородных районах. В модели используется оригинальное двумерное случайное блуждание на квадратной решетке, которое наверняка заинтересует любого физика. Предполагается, что расположение истоков и направления распространения выбираются случайным образом. Истоком первого потока является выбранный наугад квадрат, далее СББС генерирует русло на каждый следующий соседний квадрат до тех пор, пока поток не переходит границу области. Затем наугад выбирается второй исток, и аналогичным образом генерируется второй поток, который обрывается либо уходом через границу области, либо слиянием с первым потоком. Часто оказывается так, что второй поток (назовем его «Миссури») проходит до точки слияния больший путь, нежели первый («Миссисипи»). Слияние может произойти и в самой точке истока первого потока. Описанная процедура совершается до тех пор, пока все квадраты не оказываются заполненными. В дополнение к этим общим правилам допускаются различные достаточно произвольные решения с целью избежать петель, касаний и прочих несообразностей.

Согласно результатам моделирования длина реки в этой основанной на случайном блуждании модели пропорциональна площади бассейна в степени 0,64. Следовательно, D~1,28. Расхождение между этим значением и значением Домба D~4,3 можно объяснить статистической вариацией, вызванной недостаточной полнотой моделирования. Однако я склонен считать, что это расхождение отражает истинное положение дел: совокупное воздействие со стороны других потоков в модели Леопольда – Лангбейна, по-видимому, более выражено, чем влияние предыдущих положений СББС на его настоящее, а значит, меньшей размерности D следовало ожидать.

По сравнению с реальными картами реки в модели Леопольда – Лангбейна блуждают в высшей степени беспорядочно. Для устранения этого недостатка было предложено множество альтернативных вариантов. В модели Ховарда [228] постулируется рост «против течения» (согласно разнообразным совершенно искусственным схемам) от устьев, расположенных на границе квадрата, к истокам, помещенным внутри. Эта процедура генерирует заметно более прямые реки, чем те, что мы наблюдали в модели Леопольда – Лангбейна, что, по всей видимости, подразумевает и меньшую размерность D.

До сих пор исследования случайных сетей – таких, как речные системы в моделях Леопольда – Лангбейна и Ховарда – ограничиваются лишь несколькими компьютерными моделями. Это весьма прискорбно, и я, пользуясь случаем, хотел бы привлечь внимание математиков к этим интереснейшим задачам. Тот факт, что СББС, как было неоднократно доказано, чрезвычайно плохо поддается анализу, вероятно, отпугнет тех, кому больше по душе несложные, но высокооплачиваемые задачи; хотя вариант Леопольда – Лангбейна может оказаться не так суров.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература