Если мы попытаемся передать рис. 141 в точном масштабе, то его не только будет очень сложно напечатать и рассмотреть, он еще и окажется способен ввести зрителя в заблуждение. В самом деле, на нем изображена вовсе не Вселенная с размерностью
10 ГЕОМЕТРИЯ ТУРБУЛЕНТНОСТИ; ПЕРЕМЕЖАЕМОСТЬ
Исследование турбулентности — одна из старейших, сложнейших и наиболее неблагодарных глав в истории физики. Простого здравого смысла и кое-какого опыта достаточно, чтобы показать, что в одних условиях поток газа или жидкости остается гладким (в специальной терминологии — «ламинарным»), а в других — нет. Вот только где провести границу? Следует ли обозначать термином «турбулентность» все негладкие потоки, включая большую часть метеорологических и океанографических феноменов? Или лучше будет сузить значение этого термина до какого-то одного класса, и если да, то до какого? Создается впечатление, что у каждого ученого имеются собственные ответы на эти вопросы.
К счастью, нам не нужно разбираться здесь с этими расхождениями во мнениях, так как мы намерены заниматься лишь бесспорно турбулентными потоками, самой заметной характеристикой которых является полное отсутствие сколько-нибудь определенного масштаба длины: в рамках одного процесса соседствуют «вихри» всевозможных размеров. Эта характерная черта хорошо видна на рисунках Леонардо и Хокусая. Она указывает на то, что турбулентность глубоко чужда духу «старой» физики, которая имела дело лишь с явлениями, имеющими вполне определенный масштаб. И та же самая причина включает изучение турбулентности в круг наших непосредственных интересов.
Кому-то из читателей, наверное, известно, что практически все исследователи турбулентности сосредоточивались на аналитическом рассмотрении потока жидкости, совершенно не касаясь геометрической стороны проблемы. Хочется верить, что эта несбалансированность не отражает предубежденного отношения к геометрии. По сути дела, многие геометрические формы, участвующие в турбулентности, легко увидеть или сделать видимыми, и они прямо-таки напрашиваются на надлежащее описание. Однако им не удавалось привлечь к себе заслуженного внимания до появления фрактальной геометрии. Потому что, как я с самого начала и предполагал, турбулентность включает в себя множество фрактальных аспектов; о некоторых из них мы поговорим в этой и последующих главах.
Здесь необходимо сделать две оговорки. Во-первых, мы оставим в стороне проблему возникновения турбулентности в ламинарном потоке. У меня есть серьезные основания полагать, что в это возникновение также вовлечены некоторые, весьма важные, фрактальные моменты, однако они еще недостаточно разъяснены и поэтому их еще рано обсуждать здесь. Во-вторых, мы не намерены затрагивать такие периодические структуры, как ячейки Бенара и дорожки Кармана.
Начинается глава с призывов о более геометрическом подходе к турбулентности и об использовании при ее исследовании фракталов. Призывы эти многочисленны, но весьма кратки, так как включают в себя в основном предположения с очень небольшим (пока) количеством практических результатов.
После этого мы сосредоточимся на проблеме перемежаемости, которую я довольно активно исследовал. Самый важный из моих выводов состоит в том, что область рассеяния, т. е. пространственное множество, на котором концентрируется турбулентное рассеяние, может быть смоделировано фракталом. Из произведенных с различными целями измерений можно заключить, что размерность
К сожалению, у нас не получится построить точную модель, пока мы не определим топологические свойства области рассеяния. В частности, представляет ли она собой пыль, извилистую разветвленную кривую (вихревую трубу) или волнистую слоистую поверхность (вихревой лист)? Первое предположение маловероятно, а второе и третье предполагают модели, похожие на разветвленные фракталы из главы 14. Однако принять такое решение мы с вами пока не можем. Прогресс на новом фрактальном фронте никак не помогает нам разобраться с фронтом старым, топологическим. Наши знания о геометрии турбулентности все еще пребывают в зачаточном состоянии.