При слове «турбулентность» перед нашим мысленным взором появляется картинка, которая не меняется вот уже почти сто лет, с тех самых пор как Рейнольде впервые описал этот феномен по отношению к потоку жидкости в трубе: когда давление впереди потока мало, движение регулярно и «ламинарно», как только давление возрастает до определенной величины, вся регулярность неожиданно куда-то пропадает. В этом классическом примере носителя турбулентного рассеяния либо нет вообще, «пустое множество», либо им является вся труба целиком. И в том, и в другом случае отсутствуют не только достойные изучения геометрические особенности, но и сколько-нибудь веская причина для определения турбулентности.
С кильватерными струями все не так просто. Здесь существует граница между зоной турбулентности и окружающей ее водой, и геометрические особенности этой границы уже стоит изучить. Однако граница эта снова столь четко выражена, что не возникает насущной необходимости в отыскании «объективного» критерия для определения турбулентности.
Полностью установившаяся турбулентность в аэродинамической трубе также не представляет особых сложностей для исследователя, поскольку, как и в трубе Рейнольдса, зона турбулентности, по всей видимости, охватывает весь доступный объем. Тем не менее, используемые для достижения этого эффекта процедуры иногда весьма любопытны, если верить кое-каким упорно циркулирующим слухам. Говорят, что когда аэродинамическая труба только что запущена, она совершенно не годится для изучения турбулентности. Турбулентность не только не желает заполнять весь доступный ей объем, она и сама выглядит «турбулентной», проявляясь в нерегулярных и неконтролируемых порывах. Только после долгих трудов удается стабилизировать всю систему, превратив ее в некое подобие трубы Рейнольдса. Благодаря этому факту я числю себя среди тех, кому интересно, в какой степени неперемежающаяся «лабораторная турбулентность» в аэродинамических трубах может считаться тем же физическим явлением, что и перемежающаяся «естественная турбулентность» в атмосфере. Вывод: необходимо определиться с терминами.
К решению этой задачи мы подойдем кружным путем, начав с нечетко определенной концепции турбулентности и рассмотрев одномерные данные о скорости в точке. Приблизительный анализ таких данных может быть проиллюстрирован движениями центра тяжести большого самолета. Всякое отклонение самолета от своего пути указывает на наличие в атмосфере определенных областей с сильным рассеянием. Маленький самолет может послужить более чувствительным индикатором: он «чувствует» такие турбулентные потоки, которые никак не влияют на движение большого самолета, а каждый удар, претерпеваемый большим самолетом, воспринимается маленьким как целая серия более слабых ударов. Таким образом, если тщательно рассмотреть область сильного рассеяния в поперечном сечении, то станут ясно видны ламинарные включения, а при увеличении разрешающей способности анализа станут доступны и более мелкие включения.
Каждый этап требует переопределения того, что есть турбулентность. Понятие турбулентного интервала данных приобретает смысл, если понимать его как «интервал данных, который нельзя охарактеризовать полным отсутствием турбулентности». С другой стороны, более строгое понятие целиком турбулентного интервала данных представляется лишенным видимого смысла. По мере прохождения последовательных этапов анализа мы получаем все более ярко выраженную турбулентность на протяжении все меньшей доли от всего интервала данных. Объем носителя рассеяния, судя по всему, сокращается. Нашей следующей задачей будет построение модели этого носителя.
РОЛЬ САМОПОДОБНЫХ ФРАКТАЛОВ
Как я уже говорил, меня не удивляет тот факт, что на сегодняшний день по-настоящему исследованы очень немногие геометрические аспекты турбулентности, так как ученые имели в своем распоряжении только евклидовы методы. Чтобы избежать накладываемых ими ограничений, многие использовали в своих описаниях доевклидову терминологию. Например, в трудах по перемежаемости наблюдается необычно частое употребление таких «терминов», как пятнистый и комковатый, а Бэтчелор и Таунсенд [19] полагают, что «существует четыре возможных категории фигур: пузыри, пруты, бруски и ленты». Некоторые лекторы используют также (правда, чаще в устной речи) такие термины, как фасоль, спагетти и салат — образная терминология, не скрывающая мощи стоящей за ней геометрии.
Что касается тех исследований, которые я вел с 1964 г. и впервые представил на Киотском симпозиуме 1966 г. (см. [353]), то они усовершенствуют классический геометрический инструментарий добавлением в него самоподобных фракталов.