Читаем Фрактальная геометрия природы полностью

С точки зрения линейных сечений широкие классы неограниченных фракталов ведут себя достаточно просто: сечение почти наверняка пусто при D<2 и с положительной вероятностью непусто при D>2. (В главе 23 доказывается этот вывод для класса простых фракталов.)

Если бы множество-носитель турбулентного рассеяния удовлетворяло неравенству D<2, то из предыдущего заявления вытекало бы, что практически ни один из экспериментальных замеров не попадет в зоны турбулентности. Так как этого не происходит, можно предположить, что в реальности D>2. Это заключение обладает необычайной силой, поскольку оно опирается на многократно воспроизведенный эксперимент, возможные результаты которого сводятся к альтернативе между «часто» и «никогда».

Предварительный топологический аналог DT>2 (см. [387]) выглядит весьма многообещающе, однако слишком специально для того, чтобы подробно рассматривать его на этих страницах.

ГАЛАКТИКИ И ТУРБУЛЕНТНОСТЬ. СРАВНЕНИЕ

Неравенство D>2 для множества-носителя турбулентного рассеяния и обратное неравенство D<2 для распределения массы в космосе (см. главу 9) происходят из тесно связанных между собой разных знаков величины D−2 на типичном сечении фрактала и на его типичной проекции на плоскость (или на небесный свод). Для рассматриваемого в настоящей главе феномена такое сечение должно быть непустым. В главе 9, напротив, было показано, что эффект пылающего неба «отменяется», если большая часть проведенных от Земли прямых линий так никогда и не встречается ни с одной звездой. Это означает, что проекция всех звезд на земной небосвод должна иметь исчезающе малую площадь.

Различие между знаками при D−2 в двух упомянутых проблемах должно иметь самое непосредственное отношение к различию между их структурами.

(НЕ)РАВЕНСТВО ПОКАЗАТЕЛЕЙ [353, 387]

Множество полезных характеристик фрактально гомогенной турбулентности зависит исключительно от D. Эта тема рассмотрена в [387], где перемежающаяся турбулентность характеризуется с помощью ряда концептуально различных показателей, связанных некоторыми (не)равенствами. < Аналогичным образом обстоит дело с явлениями, происходящими в критической точке. ►

Спектральные (не)равенства. В [353] (где я, кстати, использовал обозначение θ=D−2) было впервые получено некое (не)равенство; обычно оно выражается через спектр скорости турбулентности, однако здесь мы запишем его в вариационной форме. Внутри фрактально гомогенной турбулентности скорость v в точке x удовлетворяет следующему выражению:

<|v(x)−v(x+r)|2>=|r|2/3+B,

где B=(3−D)/3.

В случае гомогенной турбулентности Тейлора D=3, а значит, B обращается в нуль, после чего остается классический показатель Колмогорова 2/3, с которым мы встретимся снова в главе 30.

В [387] также показано, что в более общей модели взвешенного створаживания, описанной в [378], B≤(3−D)/3.

β-модель. Авторы работы [157] ухитрились нарастить на фрактально гомогенную турбулентность (как она описана в [387]) псевдодинамическую терминологию. Их интерпретация оказалась весьма удобной, хотя математические рассуждения и выводы идентичны моим. Термин «β-модель», которым окрестили эту интерпретацию, даже приобрел некую популярность, и теперь его нередко идентифицируют с фрактальной гомогенностью.

ТОПОЛОГИЯ ТУРБУЛЕНТНОСТИ: ВОПРОС ВСЕ ЕЩЕ ОТКРЫТ

В предыдущих главах мы встретили с избытком свидетельств тому, что одно и то же значение D может характеризовать множества, весьма отличающиеся с точки зрения топологической связности. Топологическая размерность DT ставит нижнюю границу для фрактальной размерности D, однако граница эта очень часто нарушается, причем величины этих нарушений столь велики, что сама граница теряет всякий смысл. Фигура с фрактальной размерностью в интервале от 2 до 3 может выглядеть и как «лист», и как «линия», и как «пыль», а разнообразие конкретных конфигураций настолько велико, что становится очень сложно подобрать или даже придумать новые названия для них. Например, фрактальные фигуры, в общем и целом напоминающие веревку, могут вырастить настолько плотные «пряди», что в результате получится нечто «большее», чем веревка. Аналогичным образом, фрактальные почти-листы оказываются чем-то большим, чем листы. Возможно также произвольно смешивать их «листовые» и «веревочные» признаки. На интуитивном уровне можно было бы понадеяться на то, что должна существовать некая более тесная связь между фрактальной размерностью и степенью связности, однако эту надежду математики потеряли где-то между 1875 и 1925 гг. Мы обратимся к одной специальной проблеме такого рода в главе 23, но уже сейчас можно сказать, что действительная природа весьма нечеткой связи между этими структурами представляет собой по существу неизведанную территорию.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература