Читаем Фрактальная геометрия природы полностью

Отстаивать использование фракталов — шаг довольно новый и радикальный, однако обязать фракталы турбулентности быть самоподобными вполне укладывается в ортодоксальные рамки, поскольку само понятие самоподобия было впервые введено в обиход для описания турбулентности. Пионером в этой области выступил Льюис Фрай Ричардсон, с которым мы познакомились в главе 5. В 1926 г. [491] Ричардсон ввел концепцию иерархии вихрей, связанных каскадным процессом. (См. также главу 40.)

Кроме того, именно в контексте турбулентности теория каскадов и самоподобия достигла своих прогнозистских триумфов в период между 1941 и 1948 гг. Главными действующими лицами здесь были Колмогоров, Обухов, Онсагер и фон Вайцзекер, однако традиция связывает достижения этого периода только с именем Колмогорова. Как бы то ни было, где-то между Ричардсоном и Колмогоровым в теории турбулентности произошел некоторый почти незаметный сдвиг.

Если концепция самоподобия вытекает из рассмотрения доступных визуальному восприятию вихрей, то теория Колмогорова уже является чисто аналитической. Фракталы же позволяют применить методы самоподобия к геометрии турбулентности.

Фрактальный подход следует сопоставить с тем своеобразным фактом, что пузыри, пруты, бруски и ленты, составлявшие вчерашние варианты выбора, не самоподобны. Это, очевидно, и послужило причиной появления высказываний в том смысле, что выбор «примитивен» и что необходимы какие-то промежуточные варианты (см., например, [282]).

В голову приходят некоторые возможные произвольные изменения в стандартных формах специально для данного случая. Например, можно расщепить пруты на шнуры, окруженные свободно болтающимися прядями (вспомните аналогичную ситуацию с кильватерными или реактивными струями), и нарезать из брусков тонкие листы с отделяющимися слоями. Можно даже как-нибудь добиться самоподобия этих прядей и слоев.

Однако такое искусственное введение самоподобия никем до сих пор не было предпринято, и я, со своей стороны, считаю это занятие как неперспективным, так и малоприятным. Я предпочитаю следовать совершенно другим путем, предоставляя самому процессу генерировать и общие формы областей, и подробности структуры прядей и слоев. Поскольку в элементарных самоподобных фракталах отсутствует понятие привилегированного направления, мы не будем затрагивать (пока) все те интересные геометрические задачи, которые возникают при комбинации турбулентности и интенсивного движения всей системы.

< Обухов [454] и Колмогоров [277] представили в 1962 г. первые аналитические исследования перемежаемости. По своему непосредственному воздействию эти работы почти догнали работы тех же авторов 1941 г. [453, 276], однако в них имеются серьезные ошибки, и вряд ли можно говорить о сколько-нибудь значительной долгосрочной научной ценности этих работ. См. [367, 378, 387] и [280]. ►

ВНУТРЕННИЙ И ВНЕШНИЙ ПОРОГИ

Благодаря вязкости, внутренний порог турбулентности положителен. А кильватерные и реактивные струи и прочие подобные потоки явно демонстрируют конечный внешний порог Ω. Сейчас, однако, очень многие полагают, что в конечности Ω следует усомниться. Ричардсон [491] заявляет, что «согласно результатам наблюдений, численные значения [предполагается, что они должны сходиться для образцов с размерами, близкими к Ω] зависят исключительно от того, насколько велика протяженность объема, учитываемого при вычислении. Исследования Дефан- та показывают, что в атмосфере предела достичь невозможно». Метеорологи сначала проигнорировали это заявление (слишком поспешное, на мой взгляд), потом просто забыли о нем. Новые данные, приведенные в главе 11, и исследование лакунарности в главе 34 только подтверждают мое убеждение в том, что вопрос пока еще не закрыт.

СТВОРАЖИВАНИЕ И ФРАКТАЛЬНО ГОМОГЕННАЯ ТУРБУЛЕНТНОСТЬ

На предварительном этапе мы можем приблизительно представить несущее множество турбулентности в виде одного из самоподобных фракталов, полученных в предыдущих главах с помощью створаживания. Это створаживание является грубой «дерандомизированной» формой модели Новикова-Стюарта в главе 23. После конечного числа m этапов створаживающего каскада рассеяние однородно распределяется по N=r−mD из r−3m неперекрывающихся субвихрей n-го порядка, положения которых определяются генератором. Продолжив каскад до бесконечности, мы получаем предельное однородное распределение рассеяния на фрактале размерности D<3. Я думаю, этот предел можно назвать фрактально гомогенной турбулентностью.

Гомогенная турбулентность по Дж.И.Тейлору получается при D→3. Самым выдающимся результатом такого подхода является то, что створаживание не исключает размерности D=3, однако допускает и новую возможность: D<3.

ПРЯМОЕ ЭКСПЕРИМЕНТАЛЬНОЕ ПОДТВЕРЖДЕНИЕ ТОМУ, ЧТО РАЗМЕРНОСТЬ НОСИТЕЛЯ ПЕРЕМЕЖАЕМОСТИ УДОВЛЕТВОРЯЕТ НЕРАВЕНСТВУ D>2

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература