Читаем Фрактальная геометрия природы полностью

Вопрос о ветвлении, поднимаемый в главе 14, также очень важен, но его воздействие на исследования турбулентности на настоящий момент пока не выяснено.

Неравенства эксцесса. Рассмотрение проблемы связности в [88], [565] и [507] основано на использовании меры перемежаемости, называемой эксцессом. Со стороны может показаться, что эти модели имеют дело с фигурами, которые сочетают в себе топологические размерности плоскости (листы) и прямой (пруты). В действительности же топология здесь рассматривается опосредованно, через показатель предсказанного степенного отношения между эксцессом и числом Рейнольдса. К сожалению, такой подход не срабатывает, так как на показатель эксцесса влияют различные добавочные допущения, и, в конечном счете, он зависит исключительно от фрактальной размерности D фигуры, генерируемой моделью. В [88] предполагается, что значение D равно топологической размерности, которая постулируется там же, DT=2. Предположение неверно, оно лишь отражает тот факт, что данные фрактальны, а сама модель — нет. В статье [565] постулируется DT=1, но D при этом принимает дробное значение 2,6, т. е. эта модель включает в себя некий приближенный фрактал. И все же, предпринятая попытка вывести из эксцесса комбинацию интуитивной «фигурной» и топологической размерностей лишена каких бы то ни было оснований.

11 ФРАКТАЛЬНЫЕ ОСОБЕННОСТИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Эта глава посвящена первому пересечению фрактальной геометрии Природы с основным направлением математической физики. Тема эта представляется мне настолько важной, что заслуживает отдельной главы. Читатели, интересы которых лежат в других областях, могут эту главу спокойно пропустить и двигаться дальше.


РАСКОЛ В ТЕОРИИ ТУРБУЛЕНТНОСТИ

Основным недостатком текущего состояния теоретических исследований турбулентности является то, что они разделены, как минимум, на две не связанные друг с другом области. В одной царит предложенная Колмогоровым в 1941 г. (см. [276]) весьма успешная феноменология (о которой мы подробно поговорим в главе 30). Вторая имеет дело с дифференциальными уравнениями гидродинамики, выведенными для невязких жидкостей Эйлером, а для вязких — Навье (и Стоксом). Эти области никак не соотносятся между собой. Если «объяснить» и «понять» означает «свести к фундаментальным уравнениям», то теория Колмогорова еще не объяснена и не понята. Решать уравнения о движении жидкости она также не помогает.

На первый взгляд может показаться, будто сделанное мною в предыдущей главе утверждение о том, что турбулентное рассеяние является гомогенным не на всем пространстве, а лишь на некотором фрактальном подмножестве, только углубляет пропасть между областями. Но я заявлял и заявляю: это не так. И у меня есть свидетельства в свою защиту.

ВАЖНОСТЬ ОСОБЕННОСТЕЙ

Припомним процедуру, которая позволяет успешно решать уравнения математической физики. Обычно сначала составляется список, который объединяет результаты, полученные решением уравнения при особых условиях, с результатами, предположенными на основании физических наблюдений. Далее, опуская связанные с этими решениями детали, мы составляем список элементарных «особенностей», характерных для рассматриваемой задачи. Начиная с этого этапа, часто бывает возможно решать более сложные варианты уравнения в первом приближении посредством идентификации подходящих особенностей и связывания их в требуемую последовательность. Именно так студент-аналитик строит график рациональной функции. Разумеется, стандартные особенности — это стандартные евклидовы множества, т. е. точки, кривые и поверхности.

ПРЕДПОЛОЖЕНИЕ: ОСОБЕННОСТИ ДВИЖЕНИЯ ЖИДКОСТИ - ЭТО ФРАКТАЛЬНЫЕ МНОЖЕСТВА [386]

Рассматривая в таком свете сложности, возникающие при описании турбулентности с помощью решений Эйлера и Навье-Стокса, я склонен счесть их следствием того факта, что не существует стандартной особенности, которая объясняла бы воспринимаемые нами на интуитивном уровне характеристические признаки турбулентности.

Исходя из этого, я заявляю [386], что турбулентные решения фундаментальных уравнений включают в себя особенности или «почти особенности» совершенно иного рода. Эти особенности представляют собой локально масштабно-инвариантные фрактальные множества, а почти особенности — приближения к ним.

Самым простым основанием для данного утверждения можно считать такое соображение: раз уж стандартные множества оказались неспособны адекватно описать феномен, ничто не мешает попробовать следующие по изученности множества. Существуют, однако, и более конкретные основания.

НЕВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ ЭЙЛЕРА)

Первое конкретное предположение. В моем вышеизложенном утверждении говорится, в частности, и о том, что особенности решений уравнений Эйлера представляют собой фрактальные множества.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература