Читаем Фрактальная геометрия природы полностью

Основания. Эта вера зиждется на одном очень старом правиле: симметрии и другие инвариантности, представленные в уравнении, «должны» быть отражены и в решении уравнения. (Самодостаточное, тщательное и красноречивое описание можно найти в четвертой главе книги Биркгофа «Гидродинамика» [37].) Безусловно, сохранение симметрии ни в малейшей степени не является всеобщим законом Природы, следовательно, здесь нельзя исключать и возможности «нарушения симметрии». Однако давайте предположим, что симметрия сохраняется, и посмотрим, что получится. Поскольку уравнения Эйлера независимы от масштаба, их типичные решения также должны быть независимы от масштаба, причем это условие должно соблюдаться и для любых особенностей, которыми они могут обладать. А так как безуспешность всех предшествующих попыток мы принимаем как свидетельство того, что эти особенности не являются стандартными точками, линиями или поверхностями, они должны быть фракталами.

Может, конечно же, случиться так, что форма границы и начальные скорости окажутся ограничены неким масштабом. Здесь, однако, следует учитывать еще одну возможность — локальное поведение решений может определяться «принципом отсутствия ощущения границы». В этом случае решения должны быть локально безмасштабны.

Исследования Александра Чорина. В 1981 г. Чорин [80] применил к анализу диапазона инерции в полностью установившейся турбулентности метод вихрей, чем весьма серьезно укрепил мои позиции. Чорин установил, что сильно растянутая завихренность собирается в тело уменьшающегося объема, размерность которого D~2,5 вполне согласуется с выводами, сделанными в главе 10. Поправка к колмого- ровским показателям, B=0,17±0,03, также согласуется с экспериментальными данными. Из расчетов следует, что решения уравнений Эйлера в трех измерениях становятся несправедливыми при конечном значении времени.

В своей следующей, неопубликованной, работе Чорин подходит еще ближе к экспериментальному значению: 2,5.

ВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ НАВЬЕ-СТОКСА)

Второе конкретное предположение. Далее я утверждаю, что особенности решений уравнений Навье-Стокса могут быть только фракталами.

Неравенство размерности. На интуитивном уровне мы чувствуем, что решения уравнений Навье-Стокса должны непременно быть более гладкими, а значит — менее особыми, нежели решения уравнений Эйлера. Отсюда возникает следующее предположение: размерность особенностей в случае Эйлера превышает таковую в случае Навье-Стокса. Переход к нулевой вязкости можно, вне всякого сомнения, считать особенностью.

Почти особенности. Заключительное предположение моего общего утверждения касается пиков рассеяния, входящих в понятие перемежаемости: они представляют собой особенности Эйлера, сглаженные вязкостью.

Исследования В. Шеффера. Рассмотрение моих предположений для случая вязких жидкостей было впервые предпринято В. Шеффе- ром; некоторое время назад к нему присоединились и другие исследователи, желающие взглянуть в новом свете на поведение конечного или бесконечного объема жидкости, подчиняющегося уравнениям Навье-Стокса и обладающего в момент времени t=0 конечной кинетической энергией.

Шеффер [510] исходит из допущения, что особенности действительно имеют место, и показывает, что они непременно удовлетворяют следующим теоремам. Во-первых, фрактальная размерность их проекции на временную ось не превышает 1/2. Во-вторых, их проекция на пространственные координаты представляет собой в лучшем случае фрактал с размерностью 1.

Впоследствии обнаружилось, что первый из вышеприведенных результатов является следствием одного замечания в старой и довольно известной работе Лере [301], которая внезапно обрывается после получения формального неравенства, из которого как раз и следует первая теорема Шеффера. Хотя вряд ли ее можно назвать следствием — скорее, просто новая формулировка. Однако подобает ли нам относиться к этому свысока? Перенос чужих выводов в терминологически более изящную форму редко (и небезосновательно) расценивается как научное достижение, однако мне кажется, что для данного случая следует сделать исключение. Упомянутое неравенство из теоремы Лере было с практической точки зрения почти бесполезным, пока следствие Мандельброта-Шеффера не представило его миру в должной перспективе.

Все случаи применения размерности Хаусдорфа-Безиковича (во многом, кстати, шаблонные) в последних работах по уравнениям Навье-Стокса могут быть непосредственно выведены из моих предположений.

ОСОБЕННОСТИ ДРУГИХ ФИЗИЧЕСКИХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература