Основания.
Эта вера зиждется на одном очень старом правиле: симметрии и другие инвариантности, представленные в уравнении, «должны» быть отражены и в решении уравнения. (Самодостаточное, тщательное и красноречивое описание можно найти в четвертой главе книги Биркгофа «Гидродинамика» [37].) Безусловно, сохранение симметрии ни в малейшей степени не является всеобщим законом Природы, следовательно, здесь нельзя исключать и возможности «нарушения симметрии». Однако давайте предположим, что симметрия сохраняется, и посмотрим, что получится. Поскольку уравнения Эйлера независимы от масштаба, их типичные решения также должны быть независимы от масштаба, причем это условие должно соблюдаться и для любых особенностей, которыми они могут обладать. А так как безуспешность всех предшествующих попыток мы принимаем как свидетельство того, что эти особенности не являются стандартными точками, линиями или поверхностями, они должны быть фракталами.Может, конечно же, случиться так, что форма границы и начальные скорости окажутся ограничены неким масштабом. Здесь, однако, следует учитывать еще одну возможность — локальное поведение решений может определяться «принципом отсутствия ощущения границы». В этом случае решения должны быть локально безмасштабны.
Исследования Александра Чорина.
В 1981 г. Чорин [80] применил к анализу диапазона инерции в полностью установившейся турбулентности метод вихрей, чем весьма серьезно укрепил мои позиции. Чорин установил, что сильно растянутая завихренность собирается в тело уменьшающегося объема, размерность которогоВ своей следующей, неопубликованной, работе Чорин подходит еще ближе к экспериментальному значению:
ВЯЗКИЕ ЖИДКОСТИ (СЛУЧАЙ НАВЬЕ-СТОКСА)
Второе конкретное предположение.
Далее я утверждаю, что особенности решений уравнений Навье-Стокса могут быть только фракталами.Неравенство размерности.
На интуитивном уровне мы чувствуем, что решения уравнений Навье-Стокса должны непременно быть более гладкими, а значит — менее особыми, нежели решения уравнений Эйлера. Отсюда возникает следующее предположение: размерность особенностей в случае Эйлера превышает таковую в случае Навье-Стокса. Переход к нулевой вязкости можно, вне всякого сомнения, считать особенностью.Почти особенности.
Заключительное предположение моего общего утверждения касается пиков рассеяния, входящих в понятие перемежаемости: они представляют собой особенности Эйлера, сглаженные вязкостью.Исследования В. Шеффера.
Рассмотрение моих предположений для случая вязких жидкостей было впервые предпринято В. Шеффе- ром; некоторое время назад к нему присоединились и другие исследователи, желающие взглянуть в новом свете на поведение конечного или бесконечного объема жидкости, подчиняющегося уравнениям Навье-Стокса и обладающего в момент времениШеффер [510] исходит из допущения, что особенности действительно имеют место, и показывает, что они непременно удовлетворяют следующим теоремам. Во-первых, фрактальная размерность их проекции на временную ось не превышает 1/2. Во-вторых, их проекция на пространственные координаты представляет собой в лучшем случае фрактал с размерностью 1.
Впоследствии обнаружилось, что первый из вышеприведенных результатов является следствием одного замечания в старой и довольно известной работе Лере [301], которая внезапно обрывается после получения формального неравенства, из которого как раз и следует первая теорема Шеффера. Хотя вряд ли ее можно назвать следствием — скорее, просто новая формулировка. Однако подобает ли нам относиться к этому свысока? Перенос чужих выводов в терминологически более изящную форму редко (и небезосновательно) расценивается как научное достижение, однако мне кажется, что для данного случая следует сделать исключение. Упомянутое неравенство из теоремы Лере было с практической точки зрения почти бесполезным, пока следствие Мандельброта-Шеффера не представило его миру в должной перспективе.
Все случаи применения размерности Хаусдорфа-Безиковича (во многом, кстати, шаблонные) в последних работах по уравнениям Навье-Стокса могут быть непосредственно выведены из моих предположений.
ОСОБЕННОСТИ ДРУГИХ ФИЗИЧЕСКИХ НЕЛИНЕЙНЫХ УРАВНЕНИЙ