Читаем Фрактальная геометрия природы полностью

График построен на основании данных радиолокационных наблюдений зон дождей над тропической Атлантикой (скорость выпадения осадков свыше 0,2 мм/час) и данных наблюдений в инфракрасном диапазоне с геостационарного спутника зон облаков над Индийским океаном (т.е. зон с максимальной температурой облаков не выше — 10°С). Площади зон варьируются от 1км2 до 1000000км2. Размерность периметра, пригодного, по меньшей мере, для шести порядков величины, составляет 4/3. Удовольствие предоставить физическое объяснение наблюдаемому феномену я уступаю доктору Лавджою.

Самое большое облако простиралось от центральной Африки до южной Индии — а ведь это расстояние далеко превосходит толщину атмосферы, с которой очень часто (слишком часто, на мой взгляд) связывают внешний порог L атмосферной турбулентности. Заявление Ричардсона (см. с. 152) может еще оказаться пророческим.

СООТНОШЕНИЕ МЕЖДУ ПЛОЩАДЬЮ И ОБЪЕМОМ. КОНДЕНСАЦИЯ МИКРОКАПЕЛЬ

Рассуждение, с помощью которого мы получили соотношение между длиной и площадью, легко обобщается для случая пространственных областей, ограниченных фрактальными поверхностями, приводя к следующему соотношению:

(G−площадь)1/D∝(G−объем)1/3.

Чтобы проиллюстрировать это соотношение, рассмотрим конденсацию пара в жидкость. Это физическое явление знакомо всем, однако его теоретическое описание появилось совсем недавно. Согласно Фишеру [151], нижеследующая геометрическая картинка была предложена (по всей видимости, совершенно независимо друг от друга) Я. Френкелем, В. Бандом и А. Бийлом в конце 30-х гг. Газ состоит из отдельных молекул, достаточно удаленных друг от друга, за исключением случайных скоплений, где молекулы более-менее тесно связаны между собой силами притяжения. Скопления различных размеров находятся во взаимном статистическом равновесии, ассоциируя и вновь диссоциируя, однако шансов на то, что появится настолько огромное скопление, что его можно будет счесть «каплей» жидкости, чрезвычайно мало. Площадь поверхности больших скоплений (тех, что не слишком «размазаны» в пространстве на манер, скажем, скоплений водорослей) достаточно хорошо определена. Поверхность скопления придает ему устойчивость. Если теперь понизить температуру, то скоплениям станет выгодно соединяться в капли, а каплям — сливаться вместе, минимизируя тем самым общую площадь поверхности и, как следствие, общую энергию. При благоприятных условиях капли быстро растут. Появление капли макроскопических размеров означает начало конденсации.

Отталкиваясь от этой картины, Фишер предположил, что площадь и объем конденсирующейся капли связаны формулой, эквивалентной соотношению (площадь)1/D=(объем)1/3. Фишер оценивает величину D аналитически, не задумываясь о ее геометрическом смысле, мы же с неизбежностью должны признать, что поверхности капель представляют собой фракталы размерности D.

МОЗГОВЫЕ ИЗВИЛИНЫ МЛЕКОПИТАЮЩИХ

Чтобы проиллюстрировать соотношение между площадью и объемом в важном предельном случае D=3 и в то же время довершить изгнание дьявола из кривых Пеано, представленных в главе 7, рассмотрим одну широко известную проблему из сравнительной анатомии в терминах почти заполняющих пространство поверхностей.

Объем головного мозга млекопитающих колеблется от 0,3 до 3000 мл, причем у мелких животных его кора выглядит относительно или совершенно гладкой, тогда как у крупных животных она покрыта видимыми складками, независимо от положения животного на эволюционной лестнице. Зоологи утверждают, что отношение количества белого вещества (образованного нейронными аксонами) к количеству серого вещества (где находятся окончания нейронов) приблизительно одинаково у всех млекопитающих, и для того, чтобы поддерживать это отношение, кора большого мозга неизбежно собирается в складки. Знание того, что степень складчатости обусловлена чисто геометрическими причинами, освобождает человека от страха перед интеллектуальным превосходством дельфинов или китов — они, конечно, больше, однако вовсе не обязательно более высокоразвиты.

Количественная характеристика такой складчатости не под силу стандартной геометрии, но прекрасно вписывается в рамки геометрии фрактальной. Объем серого вещества приблизительно равен произведению его толщины на площадь внешней оболочки мозга, называемой на латыни pia. Если толщина ε одинакова для всех видов, то площадь оболочки будет пропорциональна не только объему серого вещества, но и объему белого вещества, а значит — полному объему мозга V. Следовательно, из соотношения между площадью и объемом получим D=3, а оболочка будет поверхностью, которая за вычетом толщины ε заполняет пространство.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература