Читаем Фрактальная геометрия природы полностью

Эмпирическое соотношение между площадью и объемом лучше описывается выражением A∝VD/3, где D/3 приблизительно находится в интервале от 0,91 до 0,93 (сведения получены из частной беседы с Джерисоном и основаны на экспериментальных данных Элиаса-Шварца, Бродмана и др.). Первое приходящее в голову объяснение заключается в том, что мозговая оболочка лишь частично заполняет пространство (2,73). В соответствующем разделе главы 17 вкратце изложены несколько более продвинутые соображения.

АЛЬВЕОЛЯРНЫЕ И КЛЕТОЧНЫЕ МЕМБРАНЫ

Найдется ли среди моих читателей биолог, который будет так любезен, что встанет и объявит всем окружающим, что предыдущий раздел не имеет никакой практической ценности и не открывает ничего нового? Я, со своей стороны, был бы чрезвычайно рад услышать такое заявление, поскольку оно лишь подкрепило бы некоторые мои рассуждения, помещенные в начале главы 7. Несмотря на то, что биолог предпочтет обойти за милю любую поверхность Пеано, устроенную для него математиками, я утверждаю, что лучшие теоретики от биологии хорошо знакомы с основной идеей таких поверхностей.

Таким образом, главная новость предыдущих разделов относится к поверхностям размерности D<3, введение которых (как мы убедились) необходимо для согласования теории с экспериментом. Рассмотрим возможность применения этих новых поверхностей в биологии, обсудив вкратце их полезность при выяснении подробной структуры некоторых живых мембран.

Начнем с краткого резюме раздела 4.3.7 труда Вайбеля «Стереологические методы» (см. [586]). Оценки общей площади поверхности альвеол человеческого легкого противоречивы: оптическая микроскопия дает 80м2, в то время как по данным электронной микроскопии площадь альвеол составляет 140м2. Существенно ли это расхождение? Ответственные за него мелкие детали не играют никакой роли в газообмене, будучи сглажены покрывающим их жидким слоем (в результате чего функциональная площадь альвеол еще более уменьшается), однако они весьма важны для обмена растворами. Из проведенных измерений (спровоцированных, кстати, моей статьей «Побережье Британии») можно в первом приближении заключить, что мембранная размерность D=2,17 в широком диапазоне масштабов.

Паумгартнер и Вайбель [464] рассмотрели субклеточные мембраны в клетках печени. В этом случае также возникает расхождение между различными оценками площади на единицу объема, и здесь оно также легко устранимо, стоит лишь нам постулировать D=2,09 для внешней митохондриальной мембраны (которая окружает клетку и по гладкости лишь немногим отличается от мембран с минимальным отношением площадь/объем). Для внутренних митохондриальных мембран D=2,53, а для эндоплазматической сети D=1,72.

Заметим еще, что носовая кость многих животных обладает чрезвычайно сложной структурой, в результате чего площадь покрывающей эту кость «мембраны» оказывается очень большой при сравнительном малом объеме. У оленей и песцов эта мембрана, возможно, служит для усиления обоняния, а вот у верблюдов аналогичная структура выполняет водосберегающую функцию [512].

КОМПЬЮТЕРНАЯ МОДУЛЯРНАЯ ГЕОМЕТРИЯ

Рассмотрим еще одну иллюстрацию соотношения между площадью и объемом, на этот раз в компьютерном аспекте. Компьютеры не являются естественными системами, но это не должно нас останавливать. Этот и некоторые другие прецеденты призваны продемонстрировать, что с помощью фрактальных методов можно, в конечном счете, описать любую естественную или искусственную «систему», состоящую из отдельных «элементов», самоподобно связанных между собой (кроме того, приоритетными в системе должны являться не свойства элементов, а правила их соединения).

Сложные компьютерные системы, как правило, разделены на многочисленные модули. Каждый состоит из некоторого большого числа C компонентов и связан со своим окружением некоторым большим числом T соединений. Оказывается, что T1/D∝C1/E с точностью до нескольких процентов. (Причина необычного написания показателей прояснится чуть ниже.) В корпорации IBM это правило приписывают Э. Ренту (см. также [288]).

Согласно предварительным данным, D/E=2/3; это же значение Р. У. Киз [264] экстраполирует на гигантские «схемы» нервной системы (оптический нерв и мозолистое тело). Однако с ростом эффективности системы отношение D/E увеличивается. Эффективность, в свою очередь, отражает степень параллелизма, заложенную в систему. В частности, конструкции с крайними показателями характеризуются крайними значениями D. В сдвиговом регистре модули выстроены в ряд и T всегда равно 2, независимо от C: следовательно, D=0. При интегральном параллелизме каждый компонент требует отдельного соединения, т. е. T=C, или D=E.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература