Читаем Фрактальная геометрия природы полностью

Заметим, что фрактально-геометрическое представление выводит некритические кластеры из критических, в то время как физики предпочитают рассматривать критические кластеры как предельный случай некритических кластеров при ξ→∞.

РАЗМЕРНОСТЬ DСКРИТИЧЕСКИХ БЕРНУЛЛИЕВЫХ КЛАСТЕРОВ

Значение Dc непосредственно выводится либо из показателя D/Dc=E/Dc в формуле для Nr(M>μ), либо из показателя Q=2Dc−D=2Dc−E в формуле для . Введя греческие буквы τ, σ и η в обычном для данного контекста значении, получим E/Dc=τ−1 и 2Dc−E=2−η. Отсюда

Dc=E/(τ−1)=E/(1+σ−1)

и Dc=1+(E−η)/2.

Благодаря установленным физиками соотношениям между величинами τ, σ и η, мы знаем, что вышеприведенные формулы для Dc эквивалентны. И наоборот, их эквивалентность имеет не только физические корни, поскольку следует из геометрических соображений.

Харрисон, Бишоп и Куинн [198], Киркпатрик [267] и Штауффер [536] независимо друг от друга получили одинаковое значение Dc. Они отталкиваются от свойств кластеров при p>pкрит и, как следствие, выражают полученный результат с помощью различных критических показателей (β, γ, v и σ). За их рассуждениями не стоит никакой конкретной фрактальной картины. Примером опасностей, таящихся в таком подходе (относительно которого я уже предостерегал ранее в этой же главе), может послужить тот факт, что он привел Стенли [533] к заключению: величины Q и Dc являются одинаково законными размерностями.

В случае E=2 численное значение Dc равно 1,89. Оно согласуется с эмпирическими свидетельствами, полученными с помощью определенной процедуры, знакомой нам по другим задачам. Возьмем некоторую величину r, которая, кстати, вовсе не обязана иметь вид 1/b, где b — целое число. Теперь возьмем большой вихрь, который в сущности представляет собой квадратную или кубическую решетку со стороной 1. Покроем его субвихрями со стороной r, сосчитаем количество N квадратов или кубов, пересекающих кластер, и вычислим приближенное значение размерности lnN/ln(1/r). Повторим процесс с каждым непустым субвихрем со стороной r, покрыв его субсубвихрями со стороной r2. И так далее, по возможности большее число раз. Наиболее осмысленные результаты дает r, близкое к 1. В некоторых ранних экспериментах [391, 192] была получена смещенная оценка D+~1,77, однако последующее, более обширное, моделирование [537] подтвердило теоретическое значение D.

< Смещенное экспериментальное значение D+ очень близко к Q; на какой-то миг может даже показаться, что это подтверждает теоретические рассуждения [534] и [391], которые ошибочны в том, что объявляют величину Q размерностью. Мое внимание на эту ошибку обратил С. Киркпатрик. Еще одну, более раннюю, отличную от вышеприведенной, но также ошибочную оценку D можно найти в статье [293]. ►

КИПАРИСОВЫЕ РОЩИ ОКЕФЕНОКИ

Если взглянуть с самолета на лес, за которым никто систематически не «присматривает», можно увидеть, что его граница весьма напоминает береговую линию острова. Контуры отдельных групп деревьев чрезвычайно извилисты и изрезаны, и по соседству с каждой большой группой расположены меньшие группы различного размера. Мое предположение о том, что эти формы могут подчиняться закону Ричардсона и/или/ закону Корчака, было полностью подтверждено в неопубликованном исследовании болота Окефеноки (см. [261]), предпринятом X. М. Хейстингсом, Р. Монтиччиоло и Д. вун Канноном. Наиболее изрезанными оказались контуры кипарисовых рощ (D~1,6); гораздо слабее выражена изрезанность широколиственных и смешанных лесов: размерность D их границ приближается к 1. Мои информаторы отмечают наличие впечатляющего разнообразия масштабов как при личном наблюдении, так и при изучении карт растительности. Имеется, кстати, и внутренний порог, равный приблизительно 40 акрам, — возможно, следствие особенностей аэрофотосъемки.

14 ВЕТВЛЕНИЕ И ФРАКТАЛЬНЫЕ РЕШЕТКИ

В главе 6 мы рассматриваем плоские кривые Коха с размерностью D<2, которые не содержат двойных точек, благодаря чему их можно назвать лишенными самопересечений или неразветвленными. А глава 7 посвящена кривым Пеано, неизбежным пределом для которых являются повсюду плотные двойные точки. В настоящей главе мы намерены сделать следующий шаг и исследовать некоторые примеры намеренно разветвленных самоподобных фигур: плоских кривых (1), пространственных кривых (1) и поверхностей (2). Количество двойных точек в разветвленной самоподобной кривой стремится к бесконечности.<3<><2<>


Математический аппарат, используемый в этой главе, не нов (хотя и известен очень немногим специалистам) — новым является мое применение его для описания Природы.

САЛФЕТКА СЕРПИНСКОГО - ОЧЕРЕДНОЕ ЧУДОВИЩЕ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература