Читаем Фрактальная геометрия природы полностью

Фрактальные пены обобщаются аналогичным образом. При E=3 «густые» пены дают размерность D=ln(b3−1)/lnb, а «разреженные» — D=ln(6b2−12b+8)/lnb. Если пустоты велики, а размерность близка к 2, то пена похожа на чрезмерно ноздреватый эмментальский сыр; при малых пустотах и D~3 пена напоминает другой изысканный сыр — аппенцелльский.

РАСПРЕДЕЛЕНИЕ РАЗМЕРОВ ПУСТОТ

Тремы губок сливаются в одно целое, в то время как тремы ковров и пен представляют собой изолированные друг от друга пустоты, подобные паузам в канторовой пыли (см. главу 8). Распределение их линейного масштаба Λ подчиняется правилу

Nr(Λ>λ)∝Fλ−D,

где F — константа. Это правило нам хорошо известно еще с рассмотрения пустот в канторовой пыли, а также островов и кластеров в главе 13.

ПОНЯТИЕ О ФРАКТАЛЬНОЙ СЕТИ. РЕШЕТКИ

Решеткой в стандартной геометрии называется совокупность параллельных прямых, ограничивающих одинаковые квадраты, треугольники или другие регулярные фигуры. Этот же термин, судя по всему, применим и к правильным фракталам, любые две точки которых могут быть соединены одна с другой двумя различными путями, нигде более не пересекающимися. В случае неправильного — например, случайного — фрактала решетку я заменяю сетью.

При более внимательном сравнении стандартных и фрактальных решеток становятся заметны весьма значительные различия. Первое заключается в том, что стандартные решетки инвариантны при сдвигах, но не при масштабировании, тогда как для фрактальных решеток верно обратное. Второе различие: при уменьшении размера ячейки стандартной решетки решетка в пределе сходится в плоскость. Кроме того, некоторые стандартные решетки можно интерполировать, помещая дополнительные прямые посередине между уже существующими прямыми и продолжая этот процесс до бесконечности. В этом случае решетка также сходится в плоскость. Аналогичным образом, если возможна интерполяция стандартной пространственной решетки, то пределом ее становится все пространство. То есть предел стандартной решетки не является решеткой. В случае фракталов ситуация прямо противоположна: пределом приближенной фрактальной решетки является фрактальная же решетка.

Термин применим и к фрактальным пенам — их можно считать разветвленными фрактальными решетками.

ФРАКТАЛЬНЫЕ РАЗМЕРНОСТИ СЕЧЕНИЙ

Основное правило. Во многих случаях при изучении фракталов важно знать размерности линейных и плоских сечений. Основное наблюдение здесь (мы воспользовались им в главе 10 для того, чтобы показать, что размерность турбулентности D>2) касается сечения плоской фрактальной фигуры интервалом, «независимым от фрактала». Оказывается, если сечение непусто, то его размерность «почти наверняка» составляет величину D−1.

Соответствующее значение для пространственного случая D−2.

Исключения. К сожалению, этот результат весьма сложно проиллюстрировать, имея дело с неслучайными фракталами, обладающими осями симметрии. Интервалы, на которые мы первым делом обращаем внимание, параллельны этим осям и, как следствие, нетипичны, а почти любое простое сечение каким-либо другим интервалом принадлежит исключительному множеству, к которому общее правило не применимо.

Возьмем, например, ковер Серпинского, троичную губку Менгера и троичную пену. Значение D−1, которое почти наверняка должно оказаться размерностью сечения плоской фигуры отрезком, будет, соответственно, равно:

ln(8/3)/ln3

ln(20/9)/ln3 и

ln(26/9)/ln3.

Обозначим через х абсциссу интервала, параллельного оси у ковра Серпинского. Если число x, записанное в троичной системе счисления, оканчивается на бесконечную последовательность нулей и двоек, то сечения сами представляют собой интервалы, а значит D=1 — больше, чем мы ожидали. Если же х оканчивается на бесконечную последовательность единиц, то сечения являются пылевидными канторовыми множествами с размерностью D=ln2/ln3, которая слишком мала. А если x оканчивается периодической последовательностью периода M, включающей в себя pM единиц и (1−p)M нулей или двоек, то размерность сечений имеет вид D=p(ln2/ln3)+(1−p). Ожидаемое значение D получается лишь при p~0,29. < То же верно и в случае случайной последовательности цифр в троичной записи числа x. ► Таким образом, мы получаем три различных размерности — наибольшую, наименьшую и среднюю.

Очень похожие результаты получаются и в пространственном случае.

Что касается салфетки Серпинского, ее наиболее вероятная размерность D=ln(3/2)/ln2, однако значения размерности «естественных» сечений варьируются от 1 до 0. Например, если короткий интервал, проходящий через середину одной из сторон салфетки, достаточно близок к перпендикуляру, то его пересечением с салфеткой будет одна-единственная точка (размерность сечения D=0).

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература