Читаем Фрактальная геометрия природы полностью

Разнообразие этих особых сечений отчасти объясняется регулярностью исходных фигур. С другой стороны, наиболее экономичное сечение (причем необязательно прямой линией) неизбежно является основой понятий топологической размерности и степени ветвления, к которым мы сейчас и переходим.

РАЗВЕТВЛЕННЫЕ ФРАКТАЛЫ КАК КРИВЫЕ И ПОВЕРХНОСТИ

Как мы уже отмечали, термин «кривая» используется в настоящем эссе как эквивалент фразы «связная фигура с топологической размерностью DT=1». Вообще говоря, математик сочтет такую формулировку не совсем удовлетворительной, точные же выражения для этого понятия весьма деликатны. К счастью, для того, чтобы объяснить, почему любая кривая Коха с инициатором [0, 1] заслуживает звания кривой, нам в главе 6 хватало одного простого соображения: как и сам интервал [0, 1], кривая Коха связна, однако становится несвязной при удалении любой принадлежащей ей точки кроме 0 и 1. А граница снежинки похожа в этом отношении на окружность — она связна, но становится несвязной, если удалить любые две ее точки.

Выражаясь более педантично (как нам теперь и подобает), топологическая размерность определяется рекурсивно. Для пустого множества DT=−1. Для любого другого множества S значение DT на единицу больше, чем наименьшая размерность DT разъединяющего множество S «сечения». Размерность конечных и канторовых пылевидных множеств DT=1−1=0, так как для их разъединения требуется удалить пустое множество. Следующие же связные множества становятся несвязными при удалении «сечения» с размерностью DT=0: окружность, интервал [0, 1], граница снежинки Коха, салфетка и ковер Серпинского, губки Менгера. (В трех последних случаях достаточно избежать особых сечений, включающих в себя интервалы.) Следовательно, размерность всех перечисленных множеств DT=1.

Исходя из тех же соображений, фрактальная пена представляет собой поверхность с размерностью DT=2.

Рассмотрим еще один вариант доказательства того, что для салфетки, всех ковров и всех губок с D<2 топологическая размерность DT=1. Поскольку DT есть целое число ≤D, из неравенства D<2 следует, что DT должна быть равна либо 0, либо 1. Но рассматриваемые множества являются связными, значит размерность DT не может быть меньше 1. Единственное решение: DT=1.

СТЕПЕНЬ ВЕТВЛЕНИЯ КРИВОЙ

Топологическая размерность и соответствующие понятия пыли, кривой и поверхности дают нам лишь классификацию первого уровня.

В самом деле, два конечных множества, содержащих соответственно M' и M'' точек, имеют одинаковую размерность DT=0, но различаются топологически. А канторова пыль отлична от любой конечной пыли.

Рассмотрим, как можно применить к кривым параллельное различие, основанное на количестве содержащихся в множестве точек (< его «мощности» ►), что приведет нас к топологическому понятию степени ветвления, определенному в начале двадцатых годов Паулем Урысоном и Карлом Менгером. Это понятие почти не упоминается в математической литературе (за исключением трудов самих первопроходцев), зато приобретает все большее значение в физике — любое чудовище проще изучать в прирученном виде, нежели в диком. Оно показывает также, что, рассматривая сначала салфетку, а лишь затем ковер, мы будем руководствоваться не только эстетическими соображениями или стремлением к завершенности.

В понятие степени ветвления входит сечение множества, содержащее наименьшее количество точек, которые следует удалить для разъединения множества S. Кроме того, оно включает в себя и окрестности всех точек P, принадлежащих множеству S.

Окружность. Для плавного перехода от стандартной геометрии к фрактальной начнем с того, что назовем множеством S окружность радиуса 1. Окружность B с центром в точке P пересекает S в R=2 точках, за исключением тех случаев, когда радиус B больше 2 — при этом R=0. Диск, ограниченный окружностью B, называется окрестностью точки P. Таким образом, любая точка P лежит в какой-либо произвольно малой окрестности, граница которой пересекает S в R=2 точках. Вот, собственно, и все: если B является границей некоторой общей окрестности точки P, не обязательно круглой, но «не слишком большой», то R равно, по меньшей мере, 2. Слова «не слишком большой» в предыдущем предложении могут, несомненно, внести путаницу, однако избежать их, к сожалению, не представляется возможным. Величина R=2 называется степенью ветвления окружности. Заметим, что для всех точек окружности эта величина неизменна.

Салфетка. Положим теперь, что множество S — это салфетка Серпинского, построенная с помощью трем. Здесь R уже не является одинаковым для всех точек P. Позвольте мне, воспользовавшись рассуждениями Серпинского, показать, что во всех точках множества, за исключением вершин инициатора, значение R может быть равным либо 2(Rmin) либо4(Rmax).

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература