Читаем Фрактальная геометрия природы полностью

Сначала разместим большие сферы радиуса ρ1 в центрах ячеек решетки с шагом 1. Узлы решетки с шагом 2, лежащие вне больших сфер, оказываются достаточно многочисленными, чтобы послужить центрами для сфер меньшего радиуса (ρ2) и так далее. Такая конструкция подразумевает следующие верхние границы величины r:

при E=1,r≤1/3, при E=2,r≤1/10,

при E=3,r≤1/27, при E→∞,r→∞

Заполнение R3 непересекающимися шарами может занять меньшее время. В случае же одномерной линии максимальное значение r составляет 1/3, что соответствует значению r для троичной канторовой пыли! Существование канторовых пылевидных множеств с r>1/3 указывает на то, что одномерная упаковка может оставлять пустоты произвольно малой размерности. С другой стороны, более тесная упаковка подразумевает более сложную структуру.

АНОНС: ЛАКУНАРНОСТЬ

Даже после того, как мы добавим к размерностям DT и D степень ветвления R, фрактал остается во многих отношениях недостаточно определен. Особое значение имеет еще одно дополнительное свойство, которое я назвал лакунарностью. Пустоты в очень лакунарном фрактале имеют очень большой размер, и наоборот. Основные определения можно было бы привести и здесь, однако мне представляется более целесообразным отложить это до главы 34.

Рис. 205. СТРЕЛА СЕРПИНСКОГО (РАЗМЕРНОСТЬ ГРАНИЦЫ D ~1,5849)


В [522] Серпинский строит кривую, инициатором которой является интервал [0, 1], а генератор и второй терагон выглядят следующим образом:

Последующие этапы построения имеют вид:

О том, как будет выглядеть эта кривая на одном из поздних этапов построения, можно получить представление, взглянув на очертания «береговой линии» в верхней части рис. 205 (над самым большим черным тр еугольником).

Самокасания. Конечные приближения кривой не имеют точек самокасания (как в главе 6), однако предельная кривая содержит бесконечно много таких точек.

Стрелы, заполняющие плоскость. Стрела на рис. 205 (если положить ее набок, она будет больше похожа на тропическую рыбу) определяется как участок кривой Серпинского между двумя последовательными возвращениями в точку самокасания — в данном случае, в середину интервала [0, 1]. Такими стрелами можно заполнить плоскость; при этом соседние стрелы соединяются друг с другом в этакой безумной экстраполяции застежки Велькро. (Или, возвращаясь к предыдущей метафоре, плавники одной рыбы в точности помещаются между плавниками двух других рыб.) Кроме того, сплавив вместе четыре должным образом выбранных соседних стрелы, мы получим точно такую же стрелу, увеличенную вдвое.

Тремы салфетки Серпинского. Я называю кривую Серпинского салфеткой по альтернативному способу ее построения, который основан на вырезании «трем» — метод, широко используемый в главах 8 и 31- 35. Мы получаем салфетку Серпинского, имея в качестве инициатора, генератора, а также двух последующих этапов построения следующие замкнутые множества:

Этот трема-генератор содержит в себе вышеприведенный линейный генератор в качестве собственного подмножества.

Водораздел. Впервые я столкнулся со стрелой Серпинского — правда, тогда я еще не знал о Серпинском — при изучении формы одного водораздела [381].

Рис. 207. АСИММЕТРИЧНАЯ ФРАКТАЛЬНАЯ ПАУТИНА (РАЗМЕРНОСТЬ D=2)


Эта паутина получается рекурсивным построением из замкнутого тетраэдра (инициатора) и совокупности четырех меньших тетраэдров (служащих генератором).

Ее размерность D=2. Попробуем спроецировать ее вдоль линии, соединяющей середины любой из пар противоположных ребер. Проекцией тетраэдра-инициатора будет квадрат, который мы назовем исходным. Каждый тетраэдр второго поколения проецируется на подквадрат, длина стороны которого составляет 1/4 от длины стороны исходного квадрата, и т. д. Таким образом на исходный квадрат проецируется вся паутина целиком. Границы подквадратов перекрываются.

Рис. 208. КОВЕР СЕРПИНСКОГО (РАЗМЕРНОСТЬ D~1,8928) И ГУБКА МЕНГЕРА (РАЗМЕРНОСТЬ D~2,7268)


Ковер Серпинского. В [523] Серпинский строит кривую, инициатором которой является сплошной квадрат, а генератор и два следующих терагона представлены ниже:

Площадь такого ковра обращается в нуль, а общий периметр его пустот стремится к бесконечности.

Рис. 208. Губка Менгера. Принцип построения очевиден. Продолжая построение до бесконечности, мы получим некий остаток, называемый губкой Менгера. Я сожалею о том, что в своих предыдущих эссе ошибочно приписал ее авторство Серпинскому. (Рисунок воспроизводится по книге Леонарда М. Блюменталя и Карла Менгера «Геометрические этюды» с любезного разрешения ее издателей, компании W. Н. Freeman & Со. © 1970.) Пересечения губки с медианами или диагоналями исходного куба являются троичными канторовыми множествами.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература