Читаем Фрактальная геометрия природы полностью

Сливающиеся острова. Как ковер, так и салфетку Серпинского можно получить и другим способом — еще одним обобщением рекурсии Коха, допускающим самоперекрытия, которые, однако, учитываются только единожды.

Для получения салфетки инициатором следует взять правильный треугольник, а генератором — фигуру, изображенную слева на приведенном ниже рисунке. Для получения ковра в качестве инициатора возьмем квадрат, а генератором послужит фигура, изображенная справа.

Здесь мы снова встречаемся с двумя феноменами, знакомыми нам по главе 13: береговая линия каждого острова спрямляема, следовательно, размерность ее равна 1, размерность же салфетки или ковра выражает скорее степень фрагментации суши (т. е. степень ее разделенности на острова), нежели степень неправильности береговых линий островов.

В остальном результат совершенно нов: в главе 13 море представляет собой связное множество, что выглядит как должная топологическая интерпретация открытых морских пространств. Оно открыто и в смысле топологии множеств, т. е. его граница ему не принадлежит. Новизна, привнесенная настоящим построением, заключается в том, что коховы острова могут теперь асимптотически «сливаться» в некий сплошной сверхостров, однако континента из него не получается, а береговые линии образуют в сочетании решетку.

< С точки зрения топологии, всякий ковер Серпинского является плоской универсальной кривой, а губка Менгера представляет собой пространственную универсальную кривую. То есть (см. [38], с. 433 и 501) эти фигуры оказываются самыми сложными кривыми соответственно в плоскости и в пространстве любой более высокой размерности. ►

Рис. 210. РАСКОЛ В СНЕЖНЫХ ПАЛАТАХ (РАЗМЕРНОСТЬ D ~1,8687)


Давным-давно в далекой стране в прекрасных Снежных Палатах восседал Великий Правитель со своею свитой. Однако между его подданными произошел раскол, за ним последовала война, в которой ни одна из сторон не одержала верх. И тогда Мудрые Старейшины провели границу, разделившую Палаты надвое, дабы туда могли войти без опасения ступить на враждебную территорию и представители Севера, и представители Юга.

Загадки лабиринта. Кто контролирует Великую Палату и как можно войти в нее снаружи? Почему некоторые малые палаты оказываются несориентированы ни по какой стороне света? Подсказку можно найти на обезьяньем дереве на рис. 55.

V НЕМАСШТАБИРУЕМЫЕ ФРАКТАЛЫ

15 ПОВЕРХНОСТИ ПОЛОЖИТЕЛЬНОГО ОБЪЕМА. ЖИВАЯ ПЛОТЬ

Фрактальные кривые, поверхности и пылевидные множества, описываемые и в научных целях приручаемые в этой части, можно назвать масштабно-инвариантными только в асимптотическом или как-нибудь иначе ограниченном смысле.


Первая глава части посвящена поверхностям положительного (не обращающегося в нуль!) объема. Что за безумное сочетание противоречивых понятий! Неужели мы, наконец, добрались до математических чудовищ, лишенных-таки какой бы то ни было полезности для естествоиспытателя? Ответ, и на этот раз, решительно отрицательный. Некая парочка весьма известных математиков-теоретиков, полагая, что они старательно избегают всяческих связей с Природой, невольно подготовили для меня как раз тот инструмент, в котором я нуждался, чтобы (помимо всего прочего) описать геометрию … живой плоти.

КАНТОРОВЫ ПЫЛЕВИДНЫЕ МНОЖЕСТВА ПОЛОЖИТЕЛЬНОЙ МЕРЫ

В качестве предварительного шага освежим в памяти построение Кантором троичного множества C. Его нулевая длина (а если быть точным до конца, то нулевая линейная мера) следует из того факта, что длины трем (средних третей) составляют в сумме

1/3+2/32+...+2k/3k+1+...=1.

Однако то, что множество C является абсолютно несвязным (и, следовательно, его топологическая размерность DT=0), не зависит от длин трем. Это свойство основано на том фундаментальном факте, что на каждом этапе построения каждый полученный на предыдущем этапе интервал рассекается удалением тремы, центр которой приходится на середину этого интервала. Обозначим отношение длин тремы и ее «несущего» интервала через λk, тогда выражение для совокупной длины интервалов, оставшихся после K этапов построения, принимает вид 0K(1−λk). Эта длина уменьшается при K→∞ до некоторого предела, который обозначим через P. В оригинальной конструкции Кантора λk≡2/3, следовательно, P=0. Однако P>0 всегда, когда 0λk<∞. В этом случае остаточное множество C* имеет положительную длину 1−P. Это множество не самоподобно, следовательно, не характеризуется размерностью подобия, однако, исходя из определения Хаусдорфа – Безиковича (см. главу 5), мы можем заключить, что размерность D такого множества равна 1. Из неравенства D>DT следует, что множество C* фрактально. Так как ни D, ни DT не зависят от длин трем λk, значения этих размерностей дают весьма поверхностную характеристику множества C*.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература