Читаем Фрактальная геометрия природы полностью

Еще более явным выглядит построение на плоскости. Вырежем из единичного квадрата крест площади λ1, оставив четыре малых квадрата по углам. Затем вырежем из каждого малого квадрата крест относительной площади λ2. Этот каскад порождает пыль, топологическая размерность DT которой равна 0, а площадь выражается произведением 0(1−λk). Если площадь не обращается в нуль, D=2.

Аналогичным образом можно получить в E− мерном пространстве пыль положительного объема с размерностями DT=0 и D=E.

ПЛАВАЮЩАЯ ВЕЛИЧИНА lnN/ln(1/r)

Хотя канторовы пылевидные множества положительной меры площади или объема не имеют размерности подобия, представляется полезным записать равенство rk=(1−λk)/2 и рассмотреть формальные размерности, определяемые как Dk=lnN/ln(1/rk).

В своем медленном изменении размерность Dk воплощает идею об эффективной размерности, рассмотренную в главе 3 при описании спутанной в шар нити. На прямой размерность D=1 предельного множества C* представляет собой предел отношения ln2/ln(1/rk). Более того, заключение D=1 не требует непременной справедливости неравенства ∑λk<∞, а удовлетворяется выполнением более слабого условия λk→0. Как следствие, мы имеем три класса линейных канторовых пылевидных множеств: а) с размерностью 0 и нулевой длиной; б) с размерностью D=1 и нулевой длиной, и, наконец, в) с размерностью D=1 и положительной длиной.<1<>

Случай, подобный последнему (в), может произойти и с кривыми Коха. Для этого достаточно изменять генератор на каждом этапе построения и позволить его размерности D устремиться к 2. Возьмем, например, rk=k/2 и присвоим Nk (а значит и Dk) максимальное значение, о котором мы говорили в пояснении к рис. 83. Предельная кривая в этом случае обладает весьма примечательным сочетанием свойств: ее фрактальная размерность D=2 нестандартна для кривой, однако ее топологическая размерность (DT=0) и площадь, которая обращается в нуль, являются стандартными.

Та же комбинация свойств характерна и для броуновского движения (см. главу 25), только здесь она достигается при избежании двойных точек.

Формальная размерность может дрейфовать не только в сторону значения D=2, но и прочь от него. Например, k этапов построения заполняющего плоскость дерева могут завершиться этапами с размерностью D<2. Результат такого построения бывает полезен при моделировании определенных речных бассейнов, которые в масштабах, превышающих внутренний порог η, выглядят как заполняющие плоскость, но в областях меньшего масштаба орошают почву не столь эффективно. Значение η очень велико в пустынях и очень мало (вплоть до 0) во влажных джунглях. Эффективная размерность таких рек составит D=2 для масштабов, больших η, и D<2 для масштабов, меньших η.>

КРИВЫЕ ПОЛОЖИТЕЛЬНОЙ ПЛОЩАДИ

Так как наше интуитивное представление о пылевидных множествах весьма несовершенно, нас мало беспокоит пыль положительной длины или объема. А вот кривую, площадь которой отлична от нуля, проглотить уже значительно сложнее. Поэтому после того, как Лебег [294] и Осгуд [458] убедили всех в том, что глотать все равно придется, эти кривые сменили кривую Пеано на посту самого чудовищного чудовища. После описания соответствующего примера я покажу, что действительность не так страшна, как идея: поверхности положительного объема оказываются, в самом буквальном смысле, близки сердцу любого человека.

А идея заключается в обобщении построения со срединным смещением, приведенного на рис. 71. Мы оставляем неизменными бухты и полуострова, каждый из которых представляет собой треугольник, вдающийся в треугольник болота, причем середина основания полуострова совпадает с серединой основания болотного треугольника. Новизна состоит в том, что относительные ширины λk бухт и полуостровов больше не являются постоянными, но стремятся к нулю при увеличении k таким образом, что 0(1−λk)>0. При таком построении площадь болота не стремится к нулю и, следовательно, предельное болото имеет размерность D=2. С другой стороны, болото оказывается совершенно отличным от любого стандартного множества с размерностью 2. Оно не только не имеет внутренних точек, но и является кривой с DT=1, поскольку окрестность любой точки может быть отделена от остального множества удалением всего двух точек.

Идею приведенного выше построения мы позаимствовали у Осгуда [458], несколько упростив его причудливую манеру упрощения сложных надуманных конструкций. Однако не дóлжно судить о ценности научного открытия, исходя из причин его совершения.

ГЕОМЕТРИЯ АРТЕРИЙ И ВЕН

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература