Читаем Фрактальная геометрия природы полностью

Когда 1, деревья самопересекаются при θ<θкрит, следовательно, если мы хотим обойтись без самопересечений, то выбор доступных значений θ сужается. Деревья на рис. 223 удовлетворяют условию θ=θкрит, однако мы начнем с предположения, что θ=θкрит.<2<>

Деревья. На первый взгляд, деревья на рисунке кажутся самоподобными, поскольку каждая ветвь вместе с произрастающими из нее меньшими ветвями является уменьшенной копией целого. Однако на самом деле две ветви, выходящие из главного разветвления, не дают в сумме целого: необходимо прибавить сюда и остаток, т. е. ствол дерева. Даже с точки зрения здравого смысла, таким остатком никак нельзя пренебречь. Более того, люди, как правило, придают большее значение стволам и ветвям деревьев, нежели концам ветвей. Если верить интуиции, ветви «господствуют» над своими концами.

Кроме того, независимо от значения D, концы ветвей дерева без самопересечений образуют пыль с размерностью DT=0, а ветви (неважно, с включенными концами или нет) – кривую с размерностью DT=1. Следовательно, топологически ветви господствуют-таки над своими концами. В самом деле, чтобы отделить от множества точку P и ее окрестность, необходимо удалить либо одну (если P - конец ветви), либо две (если P принадлежит внутренней части ветви), либо три точки (если P - точка ветвления).

Перейдем к фрактальному аспекту. Размерность множества концов ветвей D, а размерность каждой ветви 1. Что касается целого, то оно, не будучи масштабно-инвариантным, все же характеризуется фрактальной размерностью, определяемой по формуле Хаусдорфа – Безиковича, причем эта размерность не может быть ни меньше D, ни меньше 1, а на деле оказывается равной большей из двух величин. Рассмотрим каждый из случаев отдельно.

Фрактальные деревья. Когда D>1, фрактальная размерность всего дерева равна D. Несмотря на то, что ветви доминируют в конструкции как с точки зрения здравого смысла, так и топологически, во фрактальном смысле ими можно пренебречь. Так как D>DT, дерево представляет собой фрактальное множество, в котором величина D служит мерой ветвления. Таким образом, нам открывается еще одна грань фрактальной размерности в добавление к ее способности выступать качестве меры иррегулярности и фрагментации. Когда мы перейдем в главе 17 к не нитевидным деревьям, мы обнаружим, что гладкая поверхность с достаточным количеством острых локализованных «выступов» может оказаться чем-то «бóльшим», чем стандартная поверхность.

Субфрактальные деревья. В случае 0 линейная мера (совокупная длина) всего дерева конечна и положительна, так что его фрактальная размерность неизбежно равна 1. Следовательно, D=DT, т. е. такое дерево не является фрактальным.<1<>

Тем не менее, если подобрать единицы измерения таким образом, чтобы длина ствола составила 1−2r, то ветви (рассматриваемые как открытые интервалы) можно будет разместить вдоль пустот линейной канторовой пыли C, которая занимает интервал [0,1] и характеризуется теми же значениями N=2 и r, что и множество концов ветвей. Аналогичным образом, на множестве C можно разместить и сами концы ветвей. Получается, что интервал [0,1] целиком заполняется отображениями точек нашего дерева. Не отображаются только те точки, на которых держатся ветви. Эти точки образуют счетное остаточное множество.

Вспомним о замечании, сделанном нами по поводу чертовой лестницы на рис. 125 – ее форма необычна, но фракталом она не является. Если важность этих форм будет возрастать и далее, им может понадобиться особое и тщательно выбранное название. Пока же остановимся на субфракталах.

В качестве последнего эксперимента заменим прямолинейные ветви фрактальными кривыми с размерностью D*>1. Когда D*, фрактальные свойства дерева определяются ветвями, а все дерево целиком представляет собой фрактал с размерностью D*. В случае же D>D* наше дерево будет фракталом с размерностью D.

НЕОДНОРОДНЫЕ ФРАКТАЛЫ

Думаю, настала пора вводить новое определение. Фрактал F называется однородным, если все множества, полученные в результате пересечения F с диском или шаром, центр которого принадлежит F, имеют одинаковую топологическую (DT) и фрактальную (D>DT) размерности.

Очевидно, что кривые Коха, канторова пыль, разветвленные кривые и т. д. являются однородными фракталами. А остовы деревьев с D>0 из предыдущей главы следует отнести к фракталам неоднородным.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература